dc.contributorAndrade, Mauren Louise Sguario Coelho de
dc.contributorRodrigues, Pedro João Soares
dc.contributorRodrigues, Pedro João Soares
dc.contributorFernandes, José Eduardo Moreira
dc.contributorAndrade, Mauren Louise Sguario Coelho de
dc.contributorIgrejas, Getúlio Paulo Peixoto
dc.creatorNunes, Eduardo Carvalho
dc.date.accessioned2021-11-23T13:19:43Z
dc.date.accessioned2022-12-06T15:17:50Z
dc.date.available2021-11-23T13:19:43Z
dc.date.available2022-12-06T15:17:50Z
dc.date.created2021-11-23T13:19:43Z
dc.date.issued2019-12-03
dc.identifierNUNES, Eduardo Carvalho. Deteção de face falsa com imagem NIR multiespectral e proposta de sistema biométrico facial para controle de presença. 2019. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/26486
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5263729
dc.description.abstractPresence control systems that use perform face authentication need fraud detectors more reliable. A system to able to detect this task automatically and correctly brings a number of practical advantages in the field of biometric authentication. For this problem, an anti-spoofing is developed and serves as a pre-step before face recognition. The proposed approach for false face detection is to use NIR infrared camera and machine learning with deep learning. In this dissertation, it was created a database of fake and real face images with an infrared camera. From the images, three datasets were created to implement the machine learning models: Decision Tree, Random Forest, KNN, SVM and MLP. For the construction of the face recognition prototype with anti-spoofing, the Python programming language, the OpenFace, Scikit-Learn, OpenCV and Flask programming libraries were used. From these trained tools and models it was possible to have an accuracy of 97.50% for detection of false faces and real faces with the SVM classifier. For face recognition, a reliable threshold (from 0 to 1) of 0.6 for systems using 1 to N format authentication and 0.25 to 1 to 1 format threshold is set. It is intended that the proposed prototype be tested on a network of attendance at IPB.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherPonta Grossa
dc.publisherBrasil
dc.publisherCiência da Computação
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectSistemas de reconhecimento de padrões
dc.subjectFisiognomia
dc.subjectFraude - Prevenção
dc.subjectAprendizado do computador
dc.subjectPattern recognition systems
dc.subjectPhysiognomy
dc.subjectFraud - Prevention
dc.subjectMachine learning
dc.titleDeteção de face falsa com imagem NIR multiespectral e proposta de sistema biométrico facial para controle de presença
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución