dc.contributor | Silva, Sara Coelho da | |
dc.contributor | Silva, Sara Coelho da | |
dc.contributor | Mantovani , Magda Cardoso | |
dc.contributor | Candido, Lilian Caroline Xavier | |
dc.creator | Schneider, Kelli | |
dc.date.accessioned | 2020-11-20T17:29:20Z | |
dc.date.accessioned | 2022-12-06T15:15:44Z | |
dc.date.available | 2020-11-20T17:29:20Z | |
dc.date.available | 2022-12-06T15:15:44Z | |
dc.date.created | 2020-11-20T17:29:20Z | |
dc.date.issued | 2013 | |
dc.identifier | SCHNEIDER, Kelli. Estudo do vetor gradiente. 2013. 55 f. Trabalho de Conclusão de Curso (Especialização) – Universidade Tecnológica Federal do Paraná, Campo Mourão, 2013. | |
dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/17011 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5263191 | |
dc.description.abstract | This work deals with the gradient vector, highlighting its main properties and applications. Therefore, we present some preliminary concepts initially as a vector space R n , the functions of several real variables and partial derivatives. Then we show the main properties of the gradient, culminating with the property that gives us tangency conditions to justify the method of Lagrange multipliers. Finally, we seek to present applications of gradient in optimization problems. | |
dc.publisher | Universidade Tecnológica Federal do Paraná | |
dc.publisher | Campo Mourao | |
dc.publisher | Brasil | |
dc.publisher | Programa de Pós-Graduação em Matemática | |
dc.publisher | Programa de Pós-Graduação em Matemática | |
dc.publisher | UTFPR | |
dc.rights | openAccess | |
dc.subject | Espaços vetoriais | |
dc.subject | Lagrange, Funções de | |
dc.subject | Funções (Matemática) | |
dc.subject | Vector spaces | |
dc.subject | Lagrangian functions | |
dc.subject | Functions | |
dc.title | Estudo do vetor gradiente | |
dc.type | specializationThesis | |