dc.contributorSilva, Sara Coelho da
dc.contributorSilva, Sara Coelho da
dc.contributorMantovani , Magda Cardoso
dc.contributorCandido, Lilian Caroline Xavier
dc.creatorSchneider, Kelli
dc.date.accessioned2020-11-20T17:29:20Z
dc.date.accessioned2022-12-06T15:15:44Z
dc.date.available2020-11-20T17:29:20Z
dc.date.available2022-12-06T15:15:44Z
dc.date.created2020-11-20T17:29:20Z
dc.date.issued2013
dc.identifierSCHNEIDER, Kelli. Estudo do vetor gradiente. 2013. 55 f. Trabalho de Conclusão de Curso (Especialização) – Universidade Tecnológica Federal do Paraná, Campo Mourão, 2013.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/17011
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5263191
dc.description.abstractThis work deals with the gradient vector, highlighting its main properties and applications. Therefore, we present some preliminary concepts initially as a vector space R n , the functions of several real variables and partial derivatives. Then we show the main properties of the gradient, culminating with the property that gives us tangency conditions to justify the method of Lagrange multipliers. Finally, we seek to present applications of gradient in optimization problems.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCampo Mourao
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectEspaços vetoriais
dc.subjectLagrange, Funções de
dc.subjectFunções (Matemática)
dc.subjectVector spaces
dc.subjectLagrangian functions
dc.subjectFunctions
dc.titleEstudo do vetor gradiente
dc.typespecializationThesis


Este ítem pertenece a la siguiente institución