dc.contributorPalomino, Juan Amadeo Soriano
dc.contributorhttps://orcid.org/0000-0001-8178-9071
dc.contributorhttp://lattes.cnpq.br/6007144998801074
dc.contributorPalomino, Juan Amadeo Soriano
dc.contributorhttps://orcid.org/0000-0001-8178-9071
dc.contributorhttp://lattes.cnpq.br/6007144998801074
dc.contributorSare, Hugo Danilo Fernández
dc.contributorhttp://lattes.cnpq.br/6376119804316926
dc.contributorCorrêa, Wellington José
dc.contributorhttp://lattes.cnpq.br/1045931096324971
dc.contributorCavalcanti, Valeria Neves Domingos
dc.contributorhttp://lattes.cnpq.br/0280057480652087
dc.contributorMartins, Claudete Matilde Webler
dc.contributorhttp://lattes.cnpq.br/4375380624142621
dc.creatorTumelero, Marieli Musial
dc.date.accessioned5000
dc.date.accessioned2022-06-15T13:53:23Z
dc.date.accessioned2022-12-06T14:59:16Z
dc.date.available5000
dc.date.available2022-06-15T13:53:23Z
dc.date.available2022-12-06T14:59:16Z
dc.date.created5000
dc.date.created2022-06-15T13:53:23Z
dc.date.issued2017-08-25
dc.identifierTUMELERO, Marieli Musical. Controlabilidade exata para sistemas de Bresse não lineares. 2017. Tese (Doutorado em Matemática) - Universidade Estadual de Maringá, Maringá, 2017.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/28830
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5259049
dc.description.abstractThis work is concerned with the exact controllability for the Bresse system. We have made three inserts in the equations that make up the system. In the first one, we add a memory term and solve boundary exact the controllability problem as well as the interior exact controllability. In the second insert, we remove the memory term, we add linear terms to the three equations and we solve the boundary exact problem controllability. And in the latter one, we replace of linear terms by asymptotically linear terms and we also establish the boundary exact controllability result. Our calculations show that a minimum time of control is necessary to guarantee the control efficiency. In the case of interior controllability, we also need a minimum region for the efficiency of such controls. The main result of each chapter is obtained by applying the Hilbert Uniqueness Method due to Lions [28, 29].
dc.publisherUniversidade Estadual de Maringá
dc.publisherPato Branco
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUEM
dc.rightsembargoedAccess
dc.subjectSistemas lineares de controle
dc.subjectTeoria do ponto fixo
dc.subjectEspaços vetoriais
dc.subjectAnálise matemática
dc.subjectLinear control systems
dc.subjectFixed point theory
dc.subjectVector spaces
dc.subjectMathematical analysis
dc.titleControlabilidade exata para sistemas de Bresse não lineares
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución