dc.contributorMoritz, Guilherme Luiz
dc.contributorhttps://orcid.org/0000-0003-3628-2321
dc.contributorhttp://lattes.cnpq.br/0736175449254807
dc.contributorMoritz, Guilherme Luiz
dc.contributorhttps://orcid.org/0000-0003-3628-2321
dc.contributorhttp://lattes.cnpq.br/0736175449254807
dc.contributorPellenz, Marcelo Eduardo
dc.contributorhttps://orcid.org/0000-0001-6108-6272
dc.contributorhttp://lattes.cnpq.br/6834497622047154
dc.contributorRayel, Ohara Kerusauskas
dc.contributorhttps://orcid.org/0000-0002-9543-9811
dc.contributorhttp://lattes.cnpq.br/3075119518945729
dc.creatorTelles, Guilherme Pazetto
dc.date.accessioned2022-05-18T13:48:54Z
dc.date.accessioned2022-12-06T14:58:47Z
dc.date.available2022-05-18T13:48:54Z
dc.date.available2022-12-06T14:58:47Z
dc.date.created2022-05-18T13:48:54Z
dc.date.issued2022-02-21
dc.identifierTELLES, Guilherme Pazetto. Algoritmos de localização em ambientes externos aplicando rede LoRaWan. 2022. Dissertação (Mestrado em Sistemas de Energia) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/28561
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5258933
dc.description.abstractIn this paper, we introduce two different algorithms to localization of LoRaWAN devices on large scale outdoor area. The first one is Weighted Centroid (WC), classifying each gateway accordingly to the Received Signal Strength (RSSI) and Signal Noise Ratio (SNR) from the received package of the Target Node (TN). The second one also applies RSSI technique, however, differently of the previous algorithm, combines with to Outlier Detection method named Local Outlier of Probability (LoOP), selecting intersections points from circumferences. As comparing algorithms, we also will apply a Multilateraion (MLT) method, as a Time Difference of Arrival (TdoA) to the same data for results comparison. Looking for better precision estimation, Kalman Filter (KF) was applied to the package series from each TN. To validate the algorithms, they were applied to a database from Antwerp, Belgium, comparing different LoRa behaviors and algorithms characteristics, and also comparing other localization studies developed on the same data. As result, the WC+FK reach a mean error of 566,86 m, while LoOP+FK had 569 m mean. The median from both were 399,04 and 424,38 respectively. These result were better than the compared MLT and TdoAm, which had a mean error applying KF of 1824,94 and 655,03 m respectively. This demonstrates that WC+KF and LoOP improved by 31% and 8.6% the MLT+KF and TdoA+KF ones respectively. The proposals algorithms are also closer to a more complex method as Fingerprinting (FP), with 340 m mean error applied to the same database.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCuritiba
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Sistemas de Energia
dc.publisherUTFPR
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsopenAccess
dc.subjectRedes remotas (Redes de computadores)
dc.subjectAlgorítmos
dc.subjectFiltragem de Kalman
dc.subjectSistema de Posicionamento Global
dc.subjectWide area networks (Computer networks)
dc.subjectAlgorithms
dc.subjectKalman filtering
dc.subjectGlobal Positioning System
dc.titleAlgoritmos de localização em ambientes externos aplicando rede LoRaWan
dc.typemasterThesis


Este ítem pertenece a la siguiente institución