dc.contributorSiqueira, Hugo Valadares
dc.contributorhttp://lattes.cnpq.br/6904980376005290
dc.contributorUsberti, Fábio Luiz
dc.contributorhttp://lattes.cnpq.br/6034522313829097
dc.contributorMattos Neto, Paulo Salgado Gomes de
dc.contributorAlmeida, Sheila Morais de
dc.contributorStevan Junior, Sergio Luiz
dc.contributorSiqueira, Hugo Valadares
dc.creatorBelotti, Jônatas Trabuco
dc.date.accessioned2019-04-26T20:11:27Z
dc.date.accessioned2022-12-06T14:56:22Z
dc.date.available2019-04-26T20:11:27Z
dc.date.available2022-12-06T14:56:22Z
dc.date.created2019-04-26T20:11:27Z
dc.date.issued2019-02-15
dc.identifierBELOTTI, Jônatas Trabuco. Previsão de vazões afluentes utilizando redes neurais artificiais e ensembles. 2019. 137 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/4037
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5258312
dc.description.abstractThe Brazilian energy matrix is predominantly composed of hydroelectric plants. In this way, it is important to ensure maximum efficiency in the operation of these plants since the direct consequence is a significant impact on the cost of energy production and pricing. Determining the streamflow to a hydroelectric plant is a fundamental step in the efficiency of the operation. Over the years, several linear models, such as Autorregressive, and nonlinear, as Artificial Neural Networks have been used to predict streamflows. In order to improve the existing forecasting techniques, this work accomplished the forecast of monthly streamflows through the use of 2 linear models: Autoregressive and Autoregressive of Moving Averages; 10 Architectures of Artificial Neural Networks: MLP, RBF, ELM, ELM (CR), Elman, Jordan, ESN Jaeger, ESN Jaeger (CR), ESN Ozturk and ESN Ozturk (CR); and 6 Ensembles: Medium, Median, MLP, RBF, ELM and ELM (CR) combiners. The term CR is related to the presence of the regularization coefficient. The tests were carried out of the historical séries of the plants of Água Vermelha, Belo Monte, Ilha Solteira, Paulo Afonso and Tucuruí with forecasts horizons of 1, 3, 6 and 12 steps ahead. In addition, the inputs used by the neural models were selected using the Wrapper method. Also, we proposed and tested 3 forecasting strategies using data from the El Niño and La Niña climatic events, two of which resulted in significant improvements in the performances. We verified that the performance of the neural models were better than the linear models in all the simulations, proving the superiority of the nonlinear predictors. We highlight the ELM as the best predictor.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherPonta Grossa
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Ciência da Computação
dc.publisherBrasil
dc.rightsopenAccess
dc.subjectAnálise de séries temporais
dc.subjectPrevisão hidrológica
dc.subjectRedes neurais (Computação)
dc.subjectTime-series analysis
dc.subjectHidrological forecasting
dc.subjectNeural networks (Computer science)
dc.titlePrevisão de vazões afluentes utilizando redes neurais artificiais e ensembles
dc.typemasterThesis


Este ítem pertenece a la siguiente institución