dc.contributorCandido Junior, Arnaldo
dc.contributorCandido Junior, Arnaldo
dc.contributorGavioli, Alan
dc.contributorPessini, Evando Carlos
dc.creatorTibola, Rafael Henrique
dc.date.accessioned2020-11-16T13:09:19Z
dc.date.accessioned2022-12-06T14:53:46Z
dc.date.available2020-11-16T13:09:19Z
dc.date.available2022-12-06T14:53:46Z
dc.date.created2020-11-16T13:09:19Z
dc.date.issued2018-11-19
dc.identifierTIBOLA, Rafael Henrique. Detecção de spam em mensagens SMS utilizando aprendizagem de máquina. 2018. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Universidade Tecnológica Federal do Paraná, Medianeira, 2018.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/12504
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5257635
dc.description.abstractSMS (Short Message Service) is still one of the simplest and most practical mobile communication services to reach consumers, regardless of the connection to an Internet network or the capacity of the handsets. Some applications provide resources for sending SMS messages, but because they are present on the Internet, there is room for malicious users to use them to send spam. In the field of Artificial Intelligence, areas such as Machine Learning and language studies may prove to be great allies in the development of systems that aid in the filtering of spam messages. In this study, it is shown how improvements in the performance of the Bayesian Naive classification algorithm were reached, using it to classify SMS messages supported by Artificial Neural Networks and Word Embedding vectors, used to predict and generalize probabilities for words that were not used in the training of the classifier.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherMedianeira
dc.publisherBrasil
dc.publisherCiência da Computação
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectSpam (Mensagens eletrônicas)
dc.subjectRedes neurais (Computação)
dc.subjectInteligência artificial
dc.subjectSpam (Electronic mail)
dc.subjectNeural networks (Computer science)
dc.subjectArtificial intelligence
dc.titleDetecção de spam em mensagens SMS utilizando aprendizagem de máquina
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución