dc.contributorCasanova, Dalcimar
dc.contributorRibeiro, Richardson
dc.contributorCasanova, Dalcimar
dc.contributorPortolann, César Augusto
dc.contributorBarbosa, Marco Antonio de Castro
dc.contributorBorsoi, Beatriz Terezinha
dc.creatorMazzetto, Muriel
dc.date.accessioned2020-11-18T14:03:03Z
dc.date.accessioned2022-12-06T14:50:49Z
dc.date.available2020-11-18T14:03:03Z
dc.date.available2022-12-06T14:50:49Z
dc.date.created2020-11-18T14:03:03Z
dc.date.issued2016-06-28
dc.identifierMAZZETTO, Muriel. Inteligência computacional para sistemas self-healing: um estudo de caso em redes elétricas inteligentes. 2016. 72 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2016.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/14648
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5256846
dc.description.abstractThis work employs computational intelligence techniques in optimization problems found in smart grid systems. A feature of the smart grid is the auto-recovery capability of a system, for example, restore normalcy of a power distribution network after occurrence of a fault. When a system has the capability of auto-recovery after failure, this is called self-healing. An emerg-ing alternative to a self-healing system is the application of population-based techniques. Optimization algorithms by particle swarms are alternatives to find topologies able to restore a system. To this the power distribution network was modeled using graph theory, as well used the sum of the currents method for calculating the power flow. The recovery of network after fault is performed using bio-inspired algorithms adapted to the optimization problem in smart grids. The results evaluate the different factors that influence the algorithm execution and its resolution capability of the problem addressed.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherPato Branco
dc.publisherBrasil
dc.publisherDepartamento Acadêmico de Informática
dc.publisherEngenharia de Computação
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectSistemas de energia elétrica
dc.subjectEnergia elétrica - Distribuição
dc.subjectRedes elétricas inteligentes
dc.subjectInteligência computacional
dc.subjectElectric power systems
dc.subjectElectric power distribution
dc.subjectSmart power grids
dc.subjectComputational intelligence
dc.titleInteligência computacional para sistemas self-healing: um estudo de caso em redes elétricas inteligentes
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución