dc.contributorLüders, Ricardo
dc.contributorhttp://lattes.cnpq.br/5158617067991861
dc.contributorLüders, Ricardo
dc.contributorPozo, Aurora Trinidad Ramirez
dc.contributorRosa, Marcelo de Oliveira
dc.creatorPando, Luciano Urgal
dc.date.accessioned2018-08-02T15:30:49Z
dc.date.accessioned2022-12-06T14:47:37Z
dc.date.available2018-08-02T15:30:49Z
dc.date.available2022-12-06T14:47:37Z
dc.date.created2018-08-02T15:30:49Z
dc.date.issued2018-06-14
dc.identifierPANDO, Luciano Urgal. Avaliação de técnicas de estimação da matriz origem-destino do tráfego de veículos em cidades. 2018. 92 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2018.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/3299
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5255932
dc.description.abstractThe knowledge of urban mobility patterns is important to maintain good public services as well as for city planning. These mobility patterns can be characterized by using expensive fieldwork or through the huge amount of data available from services and environmental monitoring in smart cities. The origin-destination matrix estimation aims to estimate the traffic of vehicles between two particular origin and destination areas in the city from traffic observed by sensors installed on roads or from probe vehicles. This work evaluates and compares four origin-destination matrix estimation techniques: least squares, mixed-integer linear programming (MILP), genetic algorithm and particle swarm optimization (PSO). Two cities are considered as case studies: OPorto and Curitiba. The city of OPorto in Portugal has data from taxi trips used as probe vehicles. Curitiba in Brazil has road traffic sensors. In addition, due to georeferenced spatial data, algorithms for clustering and map matching are considered to characterize areas of origin-destination and routes, respectively. The case studies show better results for MILP and PSO estimates. However, they strongly depend on the amount and position of sensors.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCuritiba
dc.publisherBrasil
dc.publisherMestrado em Engenharia Elétrica e Informática Industrial
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectEngenharia de tráfego
dc.subjectProgramação heurística
dc.subjectMínimos quadrados
dc.subjectProgramação linear
dc.subjectAlgorítmos genéticos
dc.subjectPartículas (Física nuclear)
dc.subjectInteligência artificial
dc.subjectTrânsito - Fluxo
dc.subjectTransporte Urbano - Porto (Portugal)
dc.subjectTransporte Urbano - Curitiba (PR)
dc.subjectSistemas inteligentes de veículos rodoviários
dc.subjectPlanejamento urbano - Inovações tecnológicas
dc.subjectEngenharia elétrica
dc.subjectTraffic engineering
dc.subjectHeuristic programming
dc.subjectLeast squares
dc.subjectLinear programming
dc.subjectGenetic algorithms
dc.subjectParticles (Nuclear physics)
dc.subjectArtificial intelligence
dc.subjectTraffic flow
dc.subjectUrban transportation - Porto (Portugal)
dc.subjectUrban transportation - Curitiba (PR)
dc.subjectIntelligent transportation systems
dc.subjectCity planningTechnological innovations
dc.subjectElectric engineering
dc.titleAvaliação de técnicas de estimação da matriz origem-destino do tráfego de veículos em cidades
dc.typemasterThesis


Este ítem pertenece a la siguiente institución