dc.contributorSantos, Max Mauro Dias
dc.contributorSantos, Max Mauro Dias
dc.contributorCarvalho, Marcelo Vasconcelos de
dc.contributorMartins, Marcella Scoczynski Ribeiro
dc.creatorBaroni, Rafael Becker
dc.date.accessioned2020-11-19T19:51:20Z
dc.date.accessioned2022-12-06T14:36:16Z
dc.date.available2020-11-19T19:51:20Z
dc.date.available2022-12-06T14:36:16Z
dc.date.created2020-11-19T19:51:20Z
dc.date.issued2018-12-11
dc.identifierBARONI, Rafael Becker. Metodologia para controle de semáforos utilizando processamento de imagens para reconhecimento da quantidade de carros. 2018. 91 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecânica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2018.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/16279
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5252399
dc.description.abstractThe use of vehicles day by day has been increased every day that passes causing more logistics difficulties in the mean of time. This study relates especially with the internal logistics of the cities in the traffic light time optimization by applying cameras and image processing by deep learning, with the use of an enhancement algorithm, where can be verified the increase of the flows due the better distribution of the traffic light times.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherPonta Grossa
dc.publisherBrasil
dc.publisherDepartamento Acadêmico de Mecânica
dc.publisherEngenharia Mecânica
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectTrânsito - Sinais e sinalização
dc.subjectProcessamento de imagens
dc.subjectTrânsito - Congestionamento
dc.subjectTrânsito - Fluxo
dc.subjectTraffic signs and signals
dc.subjectImage processing
dc.subjectTraffic congestion
dc.subjectTraffic flow
dc.titleMetodologia para controle de semáforos utilizando processamento de imagens para reconhecimento da quantidade de carros
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución