dc.contributorMartins, Marcella Scoczynski Ribeiro
dc.contributorGonçalves, Cristhiane
dc.contributorMartins, Marcella Scoczynski Ribeiro
dc.contributorCorrea, Fernanda Cristina
dc.contributorReis, Marcio Rodrigues da Cunha
dc.contributorSola, Antonio Vanderley Herrero
dc.creatorPremebida, Sthefanie Monica
dc.creatorCamargo, Thiago Fellipe Ortiz de
dc.date.accessioned2022-07-12T17:14:28Z
dc.date.accessioned2022-12-06T14:28:38Z
dc.date.available2022-07-12T17:14:28Z
dc.date.available2022-12-06T14:28:38Z
dc.date.created2022-07-12T17:14:28Z
dc.date.issued2021-12-09
dc.identifierPREMEBIDA, Sthefanie Monica; CAMARGO, Thiago Fellipe Ortiz de. Aprendizado profundo para auxiliar a detecção de COVID-19 baseado em imagens de raio-x de tórax: uma abordagem prática. 2021. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/29086
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5249832
dc.description.abstractGiven the large number of COVID-19 cases around the world, a practical solution to reduce and alleviate the patient queue in hospitals and healthcare systems is welcome. Fast and reliable diagnostics based on technological tools can help medical professionals to manage this bottleneck situation. In this work, we propose a practical methodology using deep learning to detect and classify lungs affected by COVID-19 through chest x-ray imaging. RetinaNet architecture is used in the process. This architecture is a onestage detector combined with Focal Loss. We considered a dataset with 5000 images, 2000 to train the model, 1000 to validate, and 2000 to test the model. The results obtained show a recall score of 0.99, precision of 0.99, sensibility of 0.56, and mAP of 0.81. The high recall score implicates that a patient with COVID-19 will be classified correctly.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherPonta Grossa
dc.publisherBrasil
dc.publisherDepartamento Acadêmico de Engenharia Elétrica
dc.publisherEngenharia Elétrica
dc.publisherUTFPR
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsopenAccess
dc.subjectExame pelo raio X
dc.subjectDiagnóstico
dc.subjectPulmões - Doenças - Diagnóstico
dc.subjectExpertising, X-ray
dc.subjectDiagnosis
dc.subjectLungs - Diseases - Diagnosis
dc.titleAprendizado profundo para auxiliar a detecção de COVID-19 baseado em imagens de raio-x de tórax: uma abordagem prática
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución