dc.contributorLazzaretti, André Eugênio
dc.contributorhttps://orcid.org/0000-0003-1861-3369
dc.contributorhttp://lattes.cnpq.br/7649611874688878
dc.contributorLopes, Heitor Silvério
dc.contributorhttps://orcid.org/0000-0003-3984-1432
dc.contributorhttp://lattes.cnpq.br/4045818083957064
dc.contributorGomes, David Menotti
dc.contributorhttps://orcid.org/0000-0003-2430-2030
dc.contributorhttp://lattes.cnpq.br/6692968437800167
dc.contributorLopes, Heitor Silvério
dc.contributorhttps://orcid.org/0000-0003-3984-1432
dc.contributorhttp://lattes.cnpq.br/4045818083957064
dc.contributorRibeiro, Manassés
dc.contributorhttps://orcid.org/0000-0002-7526-5092
dc.contributorhttp://lattes.cnpq.br/6475893755893056
dc.contributorMinetto, Rodrigo
dc.contributorhttps://orcid.org/0000-0003-2277-4632
dc.contributorhttp://lattes.cnpq.br/8366112479020867
dc.contributorSchwartz, William Robson
dc.contributorhttps://orcid.org/0000-0003-1449-8834
dc.contributorhttp://lattes.cnpq.br/0704592200063682
dc.creatorGutoski, Matheus
dc.date.accessioned2022-08-12T21:48:48Z
dc.date.accessioned2022-12-06T14:27:38Z
dc.date.available2022-08-12T21:48:48Z
dc.date.available2022-12-06T14:27:38Z
dc.date.created2022-08-12T21:48:48Z
dc.date.issued2022-06-10
dc.identifierGUTOSKI, Matheus. Reconhecimento de vídeos de ações humanas em um mundo aberto: contribuições teóricas e metodológicas. 2022. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/29245
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5249490
dc.description.abstractHuman Action Recognition (HAR) is a widely studied subject in the current Computer Vision, Machine Learning, and Deep Learning research community. However, HAR is usually performed in a closed-world scenario, where all classes are known in advance. In real-world scenarios, the environment tends to change, and new classes may appear. Traditional closed-world models are ill-equipped to deal with evolving environments and require retraining with large amounts of labeled data to recognize new categories. This work approaches HAR from the Unsupervised Open-World setting. In Unsupervised Open-World Recognition, the model needs to differentiate between known and unknown classes, automatically label the unknown classes, and incrementally learn them using minimal computational time and resources. Initially, this work tackles each of these tasks separately and, finally, as a combined framework that performs Unsupervised Open-World HAR. A metric learning solution is proposed for feature learning, with a model named Triplet Inflated 3D Convolutional Neural Network (TI3D). A method that automatically estimates the number of clusters was presented using a Hierarchical Agglomerative Clustering algorithm for automatically labeling unknown classes. For Incremental Learning (IL), this work proposed the Dual-Memory Extreme Value Machine (DM-EVM). The DM-EVM can perform IL under dynamical feature representations. The proposed framework was evaluated on publicly available video datasets and presented superior performance to other state-of-the-art methods.Overall, this work offers an interesting solution to the problem posed and contributed to the goal of developing models capable of operating in real-world dynamical environments.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCuritiba
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrial
dc.publisherUTFPR
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsopenAccess
dc.subjectVisão por computador
dc.subjectSistemas de reconhecimento de padrões
dc.subjectAprendizado do computador
dc.subjectVídeo digital - Classificação
dc.subjectRedes neurais (Computação)
dc.subjectComputer vision
dc.subjectPattern recognition systems
dc.subjectMachine learning
dc.subjectDigital video - Classification
dc.subjectNeural networks (Computer science)
dc.titleReconhecimento de vídeos de ações humanas em um mundo aberto: contribuições teóricas e metodológicas
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución