dc.contributorCenteno, Tania Mezzadri
dc.contributorhttp://orcid.org/0000-0002-6521-2042
dc.contributorhttp://lattes.cnpq.br/9733090611396955
dc.contributorDelgado, Myriam Regattieri De Biase da Silva
dc.contributorhttps://orcid.org/0000-0002-2791-174X
dc.contributorhttp://lattes.cnpq.br/4166922845507601
dc.contributorAlmeida, Carolina Paula de
dc.contributorhttp://lattes.cnpq.br/8586489892942437
dc.contributorFabro, João Alberto
dc.contributorhttp://lattes.cnpq.br/6841185662777161
dc.contributorNievola, Julio Cesar
dc.contributorhttps://orcid.org/0000-0002-2212-4499
dc.contributorhttp://lattes.cnpq.br/9242867616608986
dc.contributorSilva, Ricardo Dutra da
dc.contributorhttps://orcid.org/0000-0002-8002-8411
dc.contributorhttp://lattes.cnpq.br/8512085741397097
dc.contributorCenteno, Tania Mezzadri
dc.contributorhttp://orcid.org/0000-0002-6521-2042
dc.contributorhttp://lattes.cnpq.br/9733090611396955
dc.creatorFioravanti, Celia Cristina Bojarczuk
dc.date.accessioned2020-06-18T22:16:49Z
dc.date.accessioned2022-12-06T14:19:32Z
dc.date.available2020-06-18T22:16:49Z
dc.date.available2022-12-06T14:19:32Z
dc.date.created2020-06-18T22:16:49Z
dc.date.issued2020-03-25
dc.identifierFIORAVANTI, Celia Cristina Bojarczuk. Sistema imunológico artificial com aprendizagem profunda para detectar defeitos de solda em imagens radiográficas PDVD de tubulações de petróleo. 2020. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2020.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/5023
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5246477
dc.description.abstractIn recent years, research focused on (semi)automatic radiographic inspection methods has gained more attention. The present work proposes a method for detecting defects in radiographic images of welded joints of oil pipes. Real condition images obtained by the double wall double image (DWDI) technique usually present a lower quality when compared with images traditionally considered in many studies reported in the literature. First, the proposed approach detects discontinuities in DWDI radiographic images of welded joints, and then, based on a hybrid paradigm encompassing artificial immune systems (AIS) and deep learning (DL), it classifies each discontinuity as ‘defect’ and ‘non-defect’. The proposed method performs two phases in the AIS module: early classification (based on negative selection) and evolving classification (based on clonal selection). In both phases, the pattern recognition task is performed using a set of features extracted from each discontinuity through a detector genetically encoded into immune cells. As an attempt to improve the classification performance, DL models (AlexNet and autoencoders) are incorporated aiming to increase the number of extracted features. Experiments performed on a set of 727 discontinuities show that the proposed approach achieves an F-score of 70.7%, outperforming each of its modules running by themselves: AlexNet with F-score = 64.86% and AIS with F-score = 66%. The experiments also show that the proposed model is capable outperforming tradicional classifiers such as SVM, whose best implementation has achieved an F-score around 60%. Considering the challenges imposed by real conditions on image acquisition and the low rates of false negatives, results demonstrate that the proposed approach can be used to assist experts in their inspection works when dealing with DWDI images.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherCuritiba
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrial
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectDiagnóstico radioscópico
dc.subjectRadiografia industrial
dc.subjectRadiografia médica
dc.subjectRadiografia - Qualidade da imagem
dc.subjectRadiografia - Processamento
dc.subjectAprendizado do computador
dc.subjectTubulação - Indústrias - Inspeção
dc.subjectTubos - Dinâmica dos fluidos
dc.subjectPetróleo - Transporte - Inspeção
dc.subjectDiagnosis, Radioscopic
dc.subjectRadiography, Industrial
dc.subjectRadiography, Medical
dc.subjectRadiography - Image quality
dc.subjectRadiography - Processing
dc.subjectMachine learning
dc.subjectPiping - Industries - Inspection
dc.subjectTubes - Fluid dynamics
dc.subjectPetroleum - Transportation - Inspection
dc.titleSistema imunológico artificial com aprendizagem profunda para detectar defeitos de solda em imagens radiográficas PDVD de tubulações de petróleo
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución