dc.contributorSantos, Bruno Samways dos
dc.contributorTondato, Rogério
dc.contributorTondato, Silvana Rodrigues Quintilhano
dc.contributorSantos, Bruno Samways dos
dc.creatorToledo, Isadora Gonçalves
dc.date.accessioned2021-07-15T22:43:04Z
dc.date.accessioned2022-12-06T14:10:08Z
dc.date.available2021-07-15T22:43:04Z
dc.date.available2022-12-06T14:10:08Z
dc.date.created2021-07-15T22:43:04Z
dc.date.issued2021-05-13
dc.identifierTOLEDO, Isadora Gonçalves. Técnicas de classificação para a predição da evasão universitária. 2021. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná, Londrina, 2021.
dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/25595
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5242603
dc.description.abstractThis research pursues to predict the classification of students regarding dropout through the application of Machine Learning techniques. For this, a theoretical grounding was made on the possible causes of student dropout and the obtaining of a set of data through the university system itself. First, in Experiment 1, the Decision Tree, kNN, and RNA technique were used, and then, in Experiment 2, the kNN and RNA technique was used, but with reduced attributes instead, selected by the Decision Tree in Experiment 1. It was possible to conclude that the most appropriate technique for predicting student dropout was the RNA technique, with a learning rate of 0.1, with selection of attributes, which obtained the best performance presenting accuracy of 92,3%, precision of 89.8%, and recall of 82,6 %. It was also possible to verify that the main factors that can influence dropout are issues related to students's academic performance.
dc.publisherUniversidade Tecnológica Federal do Paraná
dc.publisherLondrina
dc.publisherBrasil
dc.publisherEngenharia de Produção
dc.publisherUTFPR
dc.rightsopenAccess
dc.subjectAprendizado do computador
dc.subjectMineração de dados (Computação)
dc.subjectEvasão universitária
dc.subjectMachine learning
dc.subjectData mining
dc.subjectCollege dropouts
dc.titleTécnicas de classificação para a predição da evasão universitária
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución