Rendimiento académico de estudiantes en Educación Superior: predicciones de factores influyentes a partir de árboles de decisión

dc.creatorDíaz-Landa, Brenda
dc.creatorMeleán-Romero, Rosana
dc.creatorMarín-Rodriguez, William
dc.date2021-09-01
dc.date.accessioned2022-11-15T15:50:09Z
dc.date.available2022-11-15T15:50:09Z
dc.identifierhttp://ojs.urbe.edu/index.php/telos/article/view/3568
dc.identifier10.36390/telos233.08
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5195248
dc.descriptionThe article aimed to predict the academic performance of students of master's degrees in education, having as main authors Camborda Zamudio (2014), Candia Oviedo (2019), Castrillón et al (2020), Hussain et al. (2018), Yarlequé Wong (2019). The decision tree technique and data mining and tools provided by artificial intelligence were used to build a model with the J48 algorithm of the WEKA software, taking into account educational, family, socioeconomic, habits, and customs factors. The sample consisted of 237 students from a public university in Peru, obtaining a level of success through Cohen's Kappa coefficient of 66%. The results show a methodology capable of training a system to classify a student based on one of the academic performance categories. This classification can a priori identify students with possible academic performance problems. As a result, accompanying and mitigation measures can be implemented immediately. Keywords: decision tree; data mining; prediction; academic performance; WEKA softwareen-US
dc.descriptionEl artículo tuvo como objetivo predecir el rendimiento académico de estudiantes de maestrías en educación, teniendo como autores principales a Camborda Zamudio (2014), Candia Oviedo (2019), Castrillón et al. (2020), Hussain et al. (2018), Yarlequé Wong (2019). Se empleó la técnica de árbol de decisión y minería de datos y herramientas que provee la inteligencia artificial para construir un modelo con el algoritmo J48 del software WEKA, teniendo en cuenta factores educacionales, familiares, socioeconómicos, de hábitos y costumbres. La muestra estuvo constituida por 237 estudiantes de una universidad pública en Perú, obteniendo mediante el coeficiente Kappa de Cohen un nivel de acierto del 66%. Los resultados dan cuenta de una metodología capaz de entrenar un sistema para clasificar a un estudiante, a partir de una de las categorías del rendimiento académico. Esta clasificación puede identificar a priori a los estudiantes con posibles problemas de rendimiento académico. Como resultado de ello, las medidas de acompañamiento y mitigación se pueden implementar de inmediato. Palabras clave: rendimiento académico; árbol de decisión; minería de datos; predicción; software WEKAes-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Dr. Rafael Belloso Chacínes-ES
dc.relationhttp://ojs.urbe.edu/index.php/telos/article/view/3568/4802
dc.relationhttp://ojs.urbe.edu/index.php/telos/article/view/3568/4872
dc.relationhttp://ojs.urbe.edu/index.php/telos/article/view/3568/4826
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTelos: Revista de Estudios Interdisciplinarios en Ciencias Sociales; Vol. 23 No. 3 (2021): September-December 2021; 616-639en-US
dc.sourceTelos: Revista de Estudios Interdisciplinarios en Ciencias Sociales; Vol. 23 Núm. 3 (2021): Septiembre-Diciembre 2021; 616-639es-ES
dc.source2343-5763
dc.source1317-0570
dc.source10.36390/telos233
dc.titleAcademic performance of higher education students: Predictions of influencing factors from decision treesen-US
dc.titleRendimiento académico de estudiantes en Educación Superior: predicciones de factores influyentes a partir de árboles de decisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePer Review paperen-US
dc.typeArtículo evaluado por pareses-ES


Este ítem pertenece a la siguiente institución