dc.creatorRodríguez Contreras, Contreras
dc.creatorReyes Linero, Alberto
dc.creatorCampo Donado, Maria
dc.creatorAcosta-Humánez, Primitivo B.
dc.date.accessioned2020-10-20T17:02:46Z
dc.date.accessioned2022-11-14T19:47:14Z
dc.date.available2020-10-20T17:02:46Z
dc.date.available2022-11-14T19:47:14Z
dc.date.created2020-10-20T17:02:46Z
dc.date.issued2020-08
dc.identifier02582724
dc.identifierhttps://hdl.handle.net/20.500.12442/6723
dc.identifier10.35741/issn.0258-2724.55.4.29
dc.identifierhttp://www.jsju.org/index.php/journal/article/view/674
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5182751
dc.description.abstractIn the present work, our goal is to establish a study of some families of quadratic polynomial vector fields connected to orthogonal polynomials that relate, via two different points of view, the qualitative and the algebraic ones. We extend those results that contain some details related to differential Galois theory as well as the inclusion of Darboux theory of integrability and the qualitative theory of dynamical systems. We conclude this study with the construction of differential Galois groups, the calculation of Darboux first integral, and the construction of the global phase portraits
dc.description.abstract在当前的工作中,我们的目标是建立与正交多项式相关的二次多项式矢量场的一些族的研究 ,该正交多项式通过两种不同的观点相互关联,即定性和代数。 我们扩展了这些结果,这些结果 包含与微分加洛瓦理论有关的一些细节,以及包含达布可积性理论和动力学系统的定性理论。我 们以差分伽罗瓦群的构造,达布克斯第一积分的计算以及整体相像的构造来结束本研究。
dc.languageeng
dc.publisherSouthwest Jiaotong University
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceJOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY
dc.sourceVol. 55 No. 4, (2020)
dc.subjectDarboux first integral
dc.subjectDifferential galois theory
dc.subjectIntegrability
dc.subjectOrthogonal polynomial
dc.subjectPolynomials vector fields
dc.subject达布第一积分
dc.subject微分伽罗瓦理论
dc.subject可积性
dc.subject正交多项式
dc.subject多项式矢量场
dc.titleDynamical and algebraic analysis of planar polynomial vector fields linked to orthogonal polynomials


Este ítem pertenece a la siguiente institución