dc.creatorAcosta Humánez, P.
dc.creatorJiménez, G.
dc.date.accessioned2019-12-17T20:05:44Z
dc.date.accessioned2022-11-14T19:39:03Z
dc.date.available2019-12-17T20:05:44Z
dc.date.available2022-11-14T19:39:03Z
dc.date.created2019-12-17T20:05:44Z
dc.date.issued2019
dc.identifier17426588
dc.identifierhttps://hdl.handle.net/20.500.12442/4487
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5180704
dc.description.abstractIn this paper we present a short material concerning to some results in Morales-Ramis theory, which relates two different notions of integrability: Integrability of Hamiltonian systems through Liouville Arnold theorem and integrability of linear differential equations through differential Galois theory. As contribution, we obtain the abelian differential Galois group of the variational equation related to a bi-parametric Hamiltonian system.
dc.languageeng
dc.publisherIOP Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceJournal of Physics: Conference Series
dc.sourceVol. 1414 No. 1 (2019). 5th International Week of Science, Technology & Innovation
dc.source10.1088/1742-6596/1414/1/012011
dc.titleSome tastings in Morales-Ramis theory
dc.typearticle


Este ítem pertenece a la siguiente institución