dc.creator | Acosta-Humañez, Primitivo B. | |
dc.creator | Van Der Put, Marius | |
dc.creator | Top, Jaap | |
dc.date.accessioned | 2019-11-12T20:08:30Z | |
dc.date.accessioned | 2022-11-14T19:38:00Z | |
dc.date.available | 2019-11-12T20:08:30Z | |
dc.date.available | 2022-11-14T19:38:00Z | |
dc.date.created | 2019-11-12T20:08:30Z | |
dc.date.issued | 2019 | |
dc.identifier | 18150659 | |
dc.identifier | https://hdl.handle.net/20.500.12442/4330 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5180440 | |
dc.description.abstract | This paper rst discusses irreducibility of a Painlev e equation P. We explain
how the Painlev e property is helpful for the computation of special classical and algebraic
solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to
a Painlev e equation P. Complete integrability of H is shown to imply that all solutions
to P are classical (which includes algebraic), so in particular P is solvable by \quadratures".
Next, we show that the variational equation of P at a given algebraic solution coincides
with the normal variational equation of H at the corresponding solution. Finally, we test
the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by
showing how our results lead to a quick computation of the component of the identity of
the di erential Galois group for the rst two variational equations. As expected there are
no cases where this group is commutative. | |
dc.publisher | SIGMA | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.source | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.source | Vol. 15, (2019) | |
dc.source | https://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdf | |
dc.source | Acosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x =
f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028. | |
dc.source | Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation,
SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674. | |
dc.source | Casale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations,
Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134. | |
dc.source | Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer
Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http:
//www.math.rug.nl/~top/Clarkson.pdf. | |
dc.source | Clarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com-
put. Appl. Math. 178 (2005), 111{129. | |
dc.source | Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special
Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006,
331{411. | |
dc.source | Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter
Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002. | |
dc.source | Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic
Dyn. 12 (2007), 622{629. | |
dc.source | Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational
coefficients. II, Phys. D 2 (1981), 407{448. | |
dc.source | Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923. | |
dc.source | Lukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420. | |
dc.source | Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in
Math., Vol. 804, Springer, Berlin, 1980. | |
dc.source | Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de
Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235. | |
dc.source | Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl.
Anal. 8 (2001), 33{96. | |
dc.source | Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups
of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884. | |
dc.source | Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18
(2007), 83-95, arXiv:1202.4633. | |
dc.source | Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine
Angew. Math. 726 (2017), 1{27, arXiv:1112.2916. | |
dc.source | Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one,
J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960. | |
dc.source | Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé
equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204. | |
dc.source | Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic
and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math.
Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243. | |
dc.source | Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009),
2201{2230. | |
dc.source | Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv.
Pure Math. 1 (2011), 170{183. | |
dc.source | Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157. | |
dc.source | Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity
27 (2014), 1029-1044. | |
dc.source | Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system,
C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443. | |
dc.source | Umemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and
Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789. | |
dc.source | Umemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J.
117 (1990), 125{171. | |
dc.source | Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990),
1{80. | |
dc.source | Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148
(1997), 151{198. | |
dc.source | van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann.
Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702. | |
dc.source | van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen
Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003. | |
dc.source | Z_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa-
tions 258 (2015), 1303{1355. | |
dc.subject | Hamiltonian systems | |
dc.subject | Variational equations | |
dc.subject | Painlevé equations | |
dc.subject | differential Galois groups | |
dc.title | Variations for Some Painlevé Equations | |
dc.type | article | |