dc.creatorAcosta-Humañez, Primitivo B.
dc.creatorVan Der Put, Marius
dc.creatorTop, Jaap
dc.date.accessioned2019-11-12T20:08:30Z
dc.date.accessioned2022-11-14T19:38:00Z
dc.date.available2019-11-12T20:08:30Z
dc.date.available2022-11-14T19:38:00Z
dc.date.created2019-11-12T20:08:30Z
dc.date.issued2019
dc.identifier18150659
dc.identifierhttps://hdl.handle.net/20.500.12442/4330
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5180440
dc.description.abstractThis paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative.
dc.publisherSIGMA
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceSymmetry, Integrability and Geometry: Methods and Applications
dc.sourceVol. 15, (2019)
dc.sourcehttps://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdf
dc.sourceAcosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028.
dc.sourceAcosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.
dc.sourceCasale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134.
dc.sourceClarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf.
dc.sourceClarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129.
dc.sourceClarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411.
dc.sourceGromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
dc.sourceHorozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629.
dc.sourceJimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448.
dc.sourceLukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923.
dc.sourceLukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420.
dc.sourceMatsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.
dc.sourceMorales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.
dc.sourceMorales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96.
dc.sourceMorales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884.
dc.sourceMuntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.
dc.sourceNagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916.
dc.sourceNgo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960.
dc.sourceOhyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204.
dc.sourceOhyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243.
dc.sourceStoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230.
dc.sourceStoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183.
dc.sourceStoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.
dc.sourceStoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.
dc.sourceStoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443.
dc.sourceUmemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.
dc.sourceUmemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171.
dc.sourceUmemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80.
dc.sourceUmemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198.
dc.sourcevan der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702.
dc.sourcevan der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
dc.sourceZ_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355.
dc.subjectHamiltonian systems
dc.subjectVariational equations
dc.subjectPainlevé equations
dc.subjectdifferential Galois groups
dc.titleVariations for Some Painlevé Equations
dc.typearticle


Este ítem pertenece a la siguiente institución