dc.creatorSalazar, E
dc.creatorMora, M
dc.creatorVásquez, A
dc.creatorGelvez, E
dc.date.accessioned2020-08-27T23:53:04Z
dc.date.accessioned2022-11-14T19:32:31Z
dc.date.available2020-08-27T23:53:04Z
dc.date.available2022-11-14T19:32:31Z
dc.date.created2020-08-27T23:53:04Z
dc.date.issued2020
dc.identifier17426588
dc.identifierhttps://hdl.handle.net/20.500.12442/6381
dc.identifierhttps://iopscience.iop.org/article/10.1088/1742-6596/1514/1/012007/pdf
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5178854
dc.description.abstractThis article provides a tool that can be used in the exact sciences to obtain good approximations to reality when noisy data is inevitable. Two heuristic optimization algorithms are implemented: Simulated Annealing and Particle Swarming for the determination of the extreme learning machine output weights. The first operates in a large search space and at each iteration it probabilistically decides between staying at its current state or moving to another. The swarm of particles, it optimizes a problem from a population of candidate solutions, moving them throughout the search space according to position and speed. The methodology consists of building data sets around a polynomial function, implementing the heuristic algorithms and comparing the errors with the traditional computation method using the Moore–Penrose inverse. The results show that the heuristic optimization algorithms implemented improve the estimation of the output weights when the input have highly noisy data.
dc.languageeng
dc.publisherIOP Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceJournal of Physics: Conference Series
dc.sourceVol. 1514 No. 1 (2020)
dc.subjectExact sciences
dc.subjectData
dc.subjectOptimization algorithms
dc.subjectHeuristic algorithms
dc.titleConditioning of extreme learning machine for noisy data using heuristic optimization


Este ítem pertenece a la siguiente institución