dc.contributorFGV
dc.creatorMadureira, Alexandre L.
dc.date.accessioned2018-05-10T13:36:55Z
dc.date.accessioned2022-11-03T20:36:17Z
dc.date.available2018-05-10T13:36:55Z
dc.date.available2022-11-03T20:36:17Z
dc.date.created2018-05-10T13:36:55Z
dc.date.issued2015-12
dc.identifier0008-0624
dc.identifierhttp://hdl.handle.net/10438/23516
dc.identifier10.1007/s10092-014-0129-5
dc.identifier000364914600008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5041500
dc.description.abstractIn an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial differential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a primal hybrid formulation, which is then manipulated to result in an efficient method that is based on local independent PDEs and a global problem that is posed on the skeleton of the finite element mesh. Recasting the MHM method in a more general framework, we investigate some conditions that yield a well-posed method. We apply the general ideas to different formulations, and, in particular, come up with an interesting and fruitful connection between the Multiscale Finite Element Method and a dual hybrid method. Finally, we propose a method that combines the main ideas of the Discontinuous Enrichment Method and the MHM method.
dc.languageeng
dc.publisherSpringer-Verlag Italia Srl
dc.relationCalcolo
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectMHM
dc.subjectMixed method
dc.subjectHybrid method
dc.subjectDomain decomposition
dc.subjectFinite element
dc.subjectMultiscale
dc.titleAbstract multiscale-hybrid-mixed methods
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución