dc.contributorEscolas::EPGE
dc.contributorFGV
dc.creatorDow, James
dc.creatorWerlang, Sérgio Ribeiro da Costa
dc.date.accessioned2008-05-13T15:31:52Z
dc.date.accessioned2022-11-03T20:30:39Z
dc.date.available2008-05-13T15:31:52Z
dc.date.available2022-11-03T20:30:39Z
dc.date.created2008-05-13T15:31:52Z
dc.date.issued1993-12
dc.identifier0104-8910
dc.identifierhttp://hdl.handle.net/10438/727
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5039777
dc.description.abstractWe apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.
dc.languageeng
dc.publisherEscola de Pós-Graduação em Economia da FGV
dc.relationEnsaios Econômicos;226
dc.rightsTodo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveis
dc.titleLaws of large numbers for non-additive probabilities
dc.typeWorking Paper


Este ítem pertenece a la siguiente institución