dc.contributorFGV
dc.creatorAlmeida, Caio Ibsen Rodrigues de
dc.creatorGarcia, René
dc.date.accessioned2018-05-10T13:37:47Z
dc.date.accessioned2022-11-03T20:30:23Z
dc.date.available2018-05-10T13:37:47Z
dc.date.available2022-11-03T20:30:23Z
dc.date.created2018-05-10T13:37:47Z
dc.date.issued2017-10
dc.identifier0025-1909
dc.identifierhttp://hdl.handle.net/10438/23818
dc.identifier10.1287/mnsc.2016.2498
dc.identifier000414080400013
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5039695
dc.description.abstractBased on a family of discrepancy functions, we derive nonparametric stochastic discount factor bounds that naturally generalize variance, entropy, and higher-moment bounds. These bounds are especially useful to identify how parameters affect pricing kernel dispersion in asset pricing models. In particular, they allow us to distinguish between models where dispersion comes mainly from skewness from models where kurtosis is the primary source of dispersion. We analyze the admissibility of disaster, disappointment aversion, and long-run risk models with respect to these bounds.
dc.languageeng
dc.publisherFGV EPGE
dc.rightsopenAccess
dc.sourceWeb of Science
dc.subjectStochastic discount factor
dc.subjectInformation-theoretic bounds
dc.subjectRobustness
dc.subjectMinimum contrast estimators
dc.subjectImplicit utility maximizing weights
dc.titleEconomic implications of nonlinear pricing kernels
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución