dc.contributorFGV
dc.creatorCraizer, Marcos
dc.creatorTeixeira, Ralph Costa
dc.date.accessioned2018-09-05T16:46:29Z
dc.date.accessioned2022-11-03T20:28:22Z
dc.date.available2018-09-05T16:46:29Z
dc.date.available2022-11-03T20:28:22Z
dc.date.created2018-09-05T16:46:29Z
dc.date.issued2004
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/10438/24661
dc.identifier10.1016/j.jmaa.2004.01.029
dc.identifier2-s2.0-2442550946
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5039055
dc.description.abstractIn this paper we consider the evolution of an isolated extremum of a function under the curvature motion in the plane. We define different notions of circular extrema and show that, immediately after the motion begins, the isolated extrema become circular. We also show that if the initial function is smooth, then after any small positive time, the new function will have a quadratic expansion at the extremum with equal 'eigenvalues.' © 2004 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc.
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsopenAccess
dc.sourceScopus
dc.subjectCurvature Motion
dc.subjectIntrinsic Heat Equation
dc.subjectMean Curvature Motion
dc.titleEvolution of an extremum by curvature motion
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución