dc.contributorFGV
dc.creatorFernandes, Marcelo
dc.creatorMedeiros, Marcelo C.
dc.creatorVeiga, Alvaro
dc.date.accessioned2018-05-10T13:37:06Z
dc.date.accessioned2022-11-03T20:27:33Z
dc.date.available2018-05-10T13:37:06Z
dc.date.available2022-11-03T20:27:33Z
dc.date.created2018-05-10T13:37:06Z
dc.date.issued2016-08-08
dc.identifier0747-4938
dc.identifierhttp://hdl.handle.net/10438/23576
dc.identifier10.1080/07474938.2014.977071
dc.identifier000373554700003
dc.identifierFernandes, Marcelo/0000-0002-4680-0439
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5038793
dc.description.abstractIn this article, we propose a class of logarithmic autoregressive conditional duration (ACD)-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and asymmetries in financial durations. In particular, our functional coefficient logarithmic autoregressive conditional duration (FC-LACD) model relies on a smooth transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing sufficient conditions for strict stationarity, we address model identifiability as well as the asymptotic properties of the quasi-maximum likelihood (QML) estimator for the FC-LACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate a semiparametric variant of the FC-LACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations.
dc.languageeng
dc.publisherTaylor & Francis Inc
dc.relationEconometric reviews
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectExplosive regimes
dc.subjectNeural networks
dc.subjectQuasi-maximum likelihood
dc.subjectSieve estimation
dc.subjectSmooth transition
dc.subjectStationarity
dc.titleA (semi)parametric functional coefficient logarithmic autoregressive conditional duration model
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución