dc.contributorFGV
dc.creatorCansino, Hugo Alexander de la Cruz
dc.creatorBiscay, R. J.
dc.creatorJimenez, J. C.
dc.creatorCarbonell, F.
dc.date.accessioned2018-05-10T13:36:17Z
dc.date.accessioned2022-11-03T20:22:54Z
dc.date.available2018-05-10T13:36:17Z
dc.date.available2022-11-03T20:22:54Z
dc.date.created2018-05-10T13:36:17Z
dc.date.issued2013-02
dc.identifier1045-4446 / 1540-4102
dc.identifierhttp://hdl.handle.net/10438/23296
dc.identifier10.1016/j.mcm.2012.08.011
dc.identifier000311911700038
dc.identifierJimenez, Juan Carlos/0000-0001-6014-0505
dc.identifierJimenez, Juan Carlos/F-6305-2015
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5037258
dc.description.abstractA new approach for the construction of high order A-stable explicit integrators for ordinary differential equations (ODEs) is theoretically studied. Basically, the integrators are obtained by splitting, at each time step, the solution of the original equation in two parts: the solution of a linear ordinary differential equation plus the solution of an auxiliary ODE. The first one is solved by a Local Linearization scheme in such a way that A-stability is ensured, while the second one can be approximated by any extant scheme, preferably a high order explicit Runge-Kutta scheme. Results on the convergence and dynamical properties of this new class of schemes are given, as well as some hints for their efficient numerical implementation. An specific scheme of this new class is derived in detail, and its performance is compared with some Matlab codes in the integration of a variety of ODEs representing different types of dynamics. (C) 2012 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationMathematical and computer modelling
dc.rightsopenAccess
dc.sourceWeb of Science
dc.subjectNumerical integrators
dc.subjectA-stability
dc.subjectLocal linearization
dc.subjectRunge-Kutta methods
dc.subjectVariation of constants formula
dc.subjectHyperbolic stationary points
dc.subjectOrdinary differential-equations
dc.subjectInitial-value problems
dc.subjectStiff systems
dc.subjectExponential integrators
dc.subjectNumerical-integration
dc.subjectMatrix exponentials
dc.subjectParabolic problems
dc.subjectApproximation
dc.subjectSchemes
dc.subjectConvergence
dc.titleLocal Linearization-Runge-Kutta methods: a class of A-stable explicit integrators for dynamical systems
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución