dc.contributorAlmeida, Caio Ibsen Rodrigues de
dc.contributorEscolas::EPGE
dc.contributorFGV
dc.contributorCosta, Carlos Eugênio da
dc.contributorVicente, José
dc.creatorArdison, Kym Marcel Martins
dc.date.accessioned2015-05-04T12:37:02Z
dc.date.accessioned2022-11-03T20:19:48Z
dc.date.available2015-05-04T12:37:02Z
dc.date.available2022-11-03T20:19:48Z
dc.date.created2015-05-04T12:37:02Z
dc.date.issued2015-02-12
dc.identifierARDISON, Kym Marcel Martins. Nonparametric tail risk, macroeconomics and stock returns: predictability and risk premia. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.
dc.identifierhttp://hdl.handle.net/10438/13666
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5036221
dc.description.abstractThis paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.
dc.languageeng
dc.subjectTail risk
dc.subjectTwo-pass cross-sectional regressions
dc.subjectPriced risk factor
dc.subjectRisk-neutral probability
dc.subjectValue-at-risk
dc.titleNonparametric tail risk, macroeconomics and stock returns: predictability and risk premia
dc.typeDissertation


Este ítem pertenece a la siguiente institución