dc.contributorFGV
dc.creatorEngel, Michael
dc.creatorSteiner, Mathias
dc.creatorSeo, Jung-Woo T.
dc.creatorHersam, Mark C.
dc.creatorAvouris, Phaedon
dc.date.accessioned2018-05-10T13:36:45Z
dc.date.accessioned2022-11-03T20:12:54Z
dc.date.available2018-05-10T13:36:45Z
dc.date.available2022-11-03T20:12:54Z
dc.date.created2018-05-10T13:36:45Z
dc.date.issued2015-03
dc.identifier1530-6984
dc.identifierhttp://hdl.handle.net/10438/23455
dc.identifier10.1021/acs.nanolett.5b00048
dc.identifier000351188000104
dc.identifierHersam, Mark/B-6739-2009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5033852
dc.description.abstractWe report on the dynamics of Spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer, channel lengths. By using high resolution,optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence, of time-variable, 1061 temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals, the interdependence, of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.
dc.languageeng
dc.publisherAmer Chemical Soc
dc.relationNano letters
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectCarbon nanotubes
dc.subjectPower dissipation
dc.subjectThermal imaging
dc.subjectNanoelectronics
dc.subjectNanooptics
dc.subjectElectrical-transport
dc.titleHot spot dynamics in carbon nanotube array devices
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución