dc.contributorEscolas::EESP
dc.creatorTrucíos Maza, Carlos César
dc.creatorMazzeu, João H. G.
dc.creatorHotta, Luiz Koodi
dc.creatorPereira, Pedro L. Valls
dc.creatorHallin, Marc
dc.date.accessioned2020-02-11T16:59:48Z
dc.date.accessioned2022-11-03T19:57:44Z
dc.date.available2020-02-11T16:59:48Z
dc.date.available2022-11-03T19:57:44Z
dc.date.created2020-02-11T16:59:48Z
dc.date.issued2020-02
dc.identifierTD 521
dc.identifierhttps://hdl.handle.net/10438/28790
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5030609
dc.description.abstractGeneral dynamic factor models have demonstrated their capacity to circumvent the curse of dimensionality in time series and have been successfully applied in many economic and financial applications. However, their performance in the presence of outliers has not been analysed yet. In this paper, we study the impact of additive outliers on the identification, estimation and forecasting performance of general dynamic factor models. Based on our findings, we propose robust identification, estimation and forecasting procedures. Our proposal is evaluated via Monte Carlo experiments and in empirical data.
dc.languageeng
dc.relationFGV EESP - Textos para Discussão; TD 521
dc.rightsopenAccess
dc.subjectDimension reduction
dc.subjectForecast
dc.subjectJumps
dc.subjectLarge panels
dc.titleRobustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting
dc.typeWorking Paper


Este ítem pertenece a la siguiente institución