dc.contributorDemais unidades::RPCA
dc.creatorFernandes, Marcelo
dc.creatorEmmanuel, Guerre
dc.date.accessioned2019-07-03T14:57:45Z
dc.date.accessioned2022-11-03T19:53:11Z
dc.date.available2019-07-03T14:57:45Z
dc.date.available2022-11-03T19:53:11Z
dc.date.created2019-07-03T14:57:45Z
dc.date.issued2018-04-08
dc.identifierhttps://hdl.handle.net/10438/27664
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5030111
dc.description.abstractWe propose to smooth the entire objective function rather than only the check function in a linear quantile regression context. We derive a uniform Bahadur-Kiefer representation for the resulting convolution-type kernel estimator that demonstrates it improves on the extant quantile regression estimators in the literature. In addition, we also show that it is straightforward to compute asymptotic standard errors for the quantile regression coefficient estimates as well as to implement Wald-type tests. Simulations confirm that our smoothed quantile regression estimator performs very well in finite samples.
dc.languageeng
dc.rightsopenAccess
dc.subjectAsymptotic expansion
dc.subjectBahadur-Kiefer representation
dc.subjectConditional quantile
dc.subjectConvolution-based smoothing
dc.subjectData-driven bandwidth
dc.subjectRegressão quantílica linear
dc.titleSmoothing quantile regressions
dc.typePaper


Este ítem pertenece a la siguiente institución