dc.contributor | Silva, Moacyr Alvim Horta Barbosa da | |
dc.contributor | Saporito, Yuri Fahham | |
dc.contributor | Escolas::EMAp | |
dc.contributor | Silveira Junior, David Evangelista da | |
dc.contributor | Souza, Max Oliveira de | |
dc.creator | Birman, Bernardo | |
dc.date.accessioned | 2020-09-17T10:33:11Z | |
dc.date.accessioned | 2022-11-03T19:43:20Z | |
dc.date.available | 2020-09-17T10:33:11Z | |
dc.date.available | 2022-11-03T19:43:20Z | |
dc.date.created | 2020-09-17T10:33:11Z | |
dc.date.issued | 2020-06-26 | |
dc.identifier | https://hdl.handle.net/10438/29673 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5028760 | |
dc.description.abstract | In this work we present the main ideas of the optimal execution problem and a couple of different approaches for its modelling. We focus on the Mean-Field Game approach, and observe how restrictive it can be as we only can obtain a explicit solution for the simplest case. We model a learning algorithm through the concept of the fictitious play, and check that our strategy generated by the model outperforms some different, naive, strategies. | |
dc.description.abstract | Neste trabalho apresentamos as ideia principais do problema de execução ótima e algumas abordagens para sua modelagem. Nós focamos na modelagem de Mean-Field Game e observamos quão restritiva ela pode ser, por só obtermos uma solução explícita para o caso mais simples. Nós modelamos um algoritmo de aprendizagem através do conceito de fictitious play e checamos que a estratégia gerada pelo nosso modelo apresenta uma performance superior a estratégias mais ingênuas. | |
dc.language | eng | |
dc.subject | Mean Field Game | |
dc.subject | MFG | |
dc.subject | Optimal Control | |
dc.subject | Optimal Stochastic Control | |
dc.subject | Optimal Liquidation | |
dc.subject | Optimal Execution | |
dc.subject | Fictitious Play | |
dc.title | Optimal execution problem: a mean field game and fictitious play study | |
dc.type | Dissertation | |