dc.contributorRobledo, Franco
dc.contributorRomero, Pablo
dc.contributorPiccini Ferrín Juan Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creatorPiccini Ferrín, Juan Eduardo
dc.date.accessioned2022-06-16T11:43:40Z
dc.date.accessioned2022-10-28T20:23:29Z
dc.date.available2022-06-16T11:43:40Z
dc.date.available2022-10-28T20:23:29Z
dc.date.created2022-06-16T11:43:40Z
dc.date.issued2016
dc.identifierPiccini Ferrín, J. Static reliability and resilience in dynamic systems [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA. Área Informática, 2016.
dc.identifier1688-2776
dc.identifierhttps://hdl.handle.net/20.500.12008/32192
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4985879
dc.description.abstractTwo systems are modeled in this thesis. First, we consider a multi-component stochastic monotone binary system, or SMBS for short. The reliability of an SMBS is the probability of correct operation. A statistical approximation of the system reliability is provided for these systems, inspired in Monte Carlo Methods. Then, we are focused on the diameter constrained reliability model (DCR), which was originally developed for delay sensitive applications over the Internet infrastructure. The computational complexity of the DCR is analyzed. Networks with an efficient (i.e., polynomial time) DCR computation are offered, termed Weak graphs. Second, we model the effect of a dynamic epidemic propagation. Our first approach is to develop a SIR-based simulation, where unrealistic assumptions for SIR model (infinite, homogeneous, fully-mixed population) are discarded. Finally, we formalize a stochastic rocess that counts infected individuals, and further investigate node-immunization strategies, subject to a budget nstraint. A combinatorial optimization problem is here introduced, called Graph Fragmentation Problem. There, the impact of a highly virulent epidemic propagation is analyzed, and we mathematically prove that Greedy heuristic is suboptimal.
dc.languageen
dc.publisherUdelar. FI.
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectStochastic Binary System
dc.subjectRecursive Variance Reduction Method
dc.subjectDiameter Constrained Reliability
dc.subjectGraph theory
dc.subjectComplexity theory
dc.subjectGRASP
dc.subjectSIR Model
dc.subjectMonte Carlo methods
dc.subjectEpidemic model
dc.titleStatic reliability and resilience in dynamic systems
dc.typeTesis de doctorado


Este ítem pertenece a la siguiente institución