dc.contributorRattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorCapdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creatorRattaro, Claudina
dc.creatorLarroca, Federico
dc.creatorCapdehourat, Germán
dc.date.accessioned2021-12-29T17:28:47Z
dc.date.accessioned2022-10-28T20:19:13Z
dc.date.available2021-12-29T17:28:47Z
dc.date.available2022-10-28T20:19:13Z
dc.date.created2021-12-29T17:28:47Z
dc.date.issued2021
dc.identifierRattaro, C., Larroca, F. y Capdehourat, G. Predicting wireless RSSI using machine learning on graphs [en línea]. EN: IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, 5 p. DOI 10.1109/URUCON53396.2021.9647374
dc.identifierhttps://hdl.handle.net/20.500.12008/30570
dc.identifier10.1109/URUCON53396.2021.9647374
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4984495
dc.description.abstractIn wireless communications, optimizing the resource allocation requires the knowledge of the state of the channel. This is even more important in device-to-device communications, one typical use case in 5G/6G networks, where such knowledge is hard to obtain at reasonable signaling costs. In this paper, we study the use of graph-based machine learning methods to address this problem. That is to say, we learn to predict the channel state on a given link through measurements on other links, thus decreasing signaling overhead. In particular, we model the problem as a link-prediction one and we consider two representative approaches: Random Dot Product Graphs and Graph Neural Networks. The key point is that these methods consider the geometric structure underlying the data. They thus enable better generalization and require less training data than classic methods, as we show on our evaluation using a dataset of RSSI measurements of real-world Wi-Fi operating networks.
dc.languageen
dc.publisherIEEE
dc.relationIEEE URUCON 2021 , Montevideo, Uruguay, 24-26 nov. 2021, pp. 372-376.
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectWireless communication
dc.subjectKnowledge engineering
dc.subjectCosts
dc.subjectTraining data
dc.subjectMachine learning
dc.subjectParticle measurements
dc.subjectGraph neural networks
dc.subjectEmbeddings
dc.subjectLink-prediction
dc.subjectGraph representation learning
dc.titlePredicting wireless RSSI using machine learning on graphs.
dc.typePonencia


Este ítem pertenece a la siguiente institución