dc.contributorRodriguez Mariano, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France
dc.contributorFacciolo Gabriele, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France
dc.contributorGrompone von Gioi Rafael, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France
dc.contributorMusé Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorDelon Julie, Université de Paris, CNRS, MAP5 and Institut Universitaire de France
dc.contributorMorel Jean-Michel, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France
dc.creatorRodriguez, Mariano
dc.creatorFacciolo, Gabriele
dc.creatorGrompone von Gioi, Rafael
dc.creatorMusé, Pablo
dc.creatorDelon, Julie
dc.creatorMorel, Jean-Michel
dc.date.accessioned2021-04-13T16:11:34Z
dc.date.accessioned2022-10-28T20:08:54Z
dc.date.available2021-04-13T16:11:34Z
dc.date.available2022-10-28T20:08:54Z
dc.date.created2021-04-13T16:11:34Z
dc.date.issued2020
dc.identifierRodriguez, M., Facciolo, G., Grompone von Gioi, R. y otros. Cnn-assisted coverings in the space of tilts : Best affine invariant performances with the speed of cnns [Preprint]. EN: 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25-28 oct, 2020, pp. 2201-2205. DOI: 10.1109/ICIP40778.2020.9191245.
dc.identifierhal-02494121
dc.identifierhttps://hdl.handle.net/20.500.12008/27062
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4981043
dc.description.abstractThe classic approach to image matching consists in the detection, description and matching of keypoints. In the description, the local information surrounding the keypoint is encoded. This locality enables affine invariant methods. Indeed, smooth deformations caused by viewpoint changes are well approximated by affine maps. Despite numerous efforts, affine invariant descriptors have remained elusive. This has led to the development of IMAS (Image Matching by Affine Simulation) methods that simulate viewpoint changes to attain the desired invariance. Yet, recent CNN-based methods seem to provide a way to learn affine invariant descriptors. Still, as a first contribution, we show that current CNN-based methods are far from the state-of-the-art performance provided by IMAS. This confirms that there is still room for improvement for learned methods. Second, we show that recent advances in affine patch normalization can be used to create adaptive IMAS methods that select their affine simulations depending on query and target images. The proposed methods are shown to attain a good compromise: on the one hand, they reach the performance of state-of-the-art IMAS methods but are faster; on the other hand, they perform significantly better than non-simulating methods, including recent ones. Source codes are available at https://rdguez-mariano.github.io/pages/adimas.
dc.languageen
dc.publisherIEEE
dc.relation2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25-28 oct, pp 2201-2205, 2020
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectCameras
dc.subjectAdaptation models
dc.subjectImage matching
dc.subjectMathematical model
dc.subjectEstimation
dc.subjectOptical imaging
dc.subjectDistortion
dc.subjectImage comparison
dc.subjectAffine invariance
dc.subjectIMAS
dc.subjectSIFT
dc.subjectRootSIFT
dc.subjectConvolutional neural networks
dc.titleCnn-assisted coverings in the space of tilts : Best affine invariant performances with the speed of cnns.
dc.typePreprint


Este ítem pertenece a la siguiente institución