dc.contributor | Rodriguez Mariano, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France | |
dc.contributor | Facciolo Gabriele, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France | |
dc.contributor | Grompone von Gioi Rafael, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France | |
dc.contributor | Musé Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | |
dc.contributor | Delon Julie, Université de Paris, CNRS, MAP5 and Institut Universitaire de France | |
dc.contributor | Morel Jean-Michel, Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France | |
dc.creator | Rodriguez, Mariano | |
dc.creator | Facciolo, Gabriele | |
dc.creator | Grompone von Gioi, Rafael | |
dc.creator | Musé, Pablo | |
dc.creator | Delon, Julie | |
dc.creator | Morel, Jean-Michel | |
dc.date.accessioned | 2021-04-13T16:11:34Z | |
dc.date.accessioned | 2022-10-28T20:08:54Z | |
dc.date.available | 2021-04-13T16:11:34Z | |
dc.date.available | 2022-10-28T20:08:54Z | |
dc.date.created | 2021-04-13T16:11:34Z | |
dc.date.issued | 2020 | |
dc.identifier | Rodriguez, M., Facciolo, G., Grompone von Gioi, R. y otros. Cnn-assisted coverings in the space of tilts : Best affine invariant performances with the speed of cnns [Preprint]. EN: 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25-28 oct, 2020, pp. 2201-2205. DOI: 10.1109/ICIP40778.2020.9191245. | |
dc.identifier | hal-02494121 | |
dc.identifier | https://hdl.handle.net/20.500.12008/27062 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4981043 | |
dc.description.abstract | The classic approach to image matching consists in the detection, description and matching of keypoints. In the description, the local information surrounding the keypoint is encoded. This locality enables affine invariant methods. Indeed, smooth deformations caused by viewpoint changes are well approximated by affine maps. Despite numerous efforts, affine invariant descriptors have remained elusive. This has led to the development of IMAS (Image Matching by Affine Simulation) methods that simulate viewpoint changes to attain the desired invariance. Yet, recent CNN-based methods seem to provide a way to learn affine invariant descriptors. Still, as a first contribution, we show that current CNN-based methods are far from the state-of-the-art performance provided by IMAS. This confirms that there is still room for improvement for learned methods. Second, we show that recent advances in affine patch normalization can be used to create adaptive IMAS methods that select their affine simulations depending on query and target images. The proposed methods are shown to attain a good compromise: on the one hand, they reach the performance of state-of-the-art IMAS methods but are faster; on the other hand, they perform significantly better than non-simulating methods, including recent ones. Source codes are available at https://rdguez-mariano.github.io/pages/adimas. | |
dc.language | en | |
dc.publisher | IEEE | |
dc.relation | 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25-28 oct, pp 2201-2205, 2020 | |
dc.rights | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | |
dc.subject | Cameras | |
dc.subject | Adaptation models | |
dc.subject | Image matching | |
dc.subject | Mathematical model | |
dc.subject | Estimation | |
dc.subject | Optical imaging | |
dc.subject | Distortion | |
dc.subject | Image comparison | |
dc.subject | Affine invariance | |
dc.subject | IMAS | |
dc.subject | SIFT | |
dc.subject | RootSIFT | |
dc.subject | Convolutional neural networks | |
dc.title | Cnn-assisted coverings in the space of tilts : Best affine invariant performances with the speed of cnns. | |
dc.type | Preprint | |