dc.contributor | Alonso-Suárez Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería. Laboratorio de Energía Solar. | |
dc.contributor | David Mathieu, University of La Réunion - PIMENT laboratory. | |
dc.contributor | Teixeira-Branco Vívian., Universidad de la República (Uruguay). Facultad de Ingeniería. Laboratorio de Energía Solar | |
dc.contributor | Lauret Philippe, University of La Réunion - PIMENT laboratory. | |
dc.creator | Alonso-Suárez, Rodrigo | |
dc.creator | David, Mathieu | |
dc.creator | Teixeira-Branco, Vívian | |
dc.creator | Lauret, Philippe | |
dc.date.accessioned | 2020-06-12T15:30:22Z | |
dc.date.available | 2020-06-12T15:30:22Z | |
dc.date.created | 2020-06-12T15:30:22Z | |
dc.date.issued | 2020 | |
dc.identifier | Alonso-Suárez, R., David, M., Branco, V. y otros. Intra-day solar probabilistic forecasts including local short-term variability and satellite information [Preprint] Publicado en : Renewable energy, Vol. 158, Oct. 2020, pp. 554-573. DOI: https://doi.org/10.1016/j.renene.2020.05.046. | |
dc.identifier | https://hdl.handle.net/20.500.12008/24327 | |
dc.description.abstract | In this work, three models are built to produce intra-day probabilistic solar forecasts with lead times ranging from 10 min to 3 h with a granularity of 10 min. The first model makes only use of past ground measurements. The second model upgrades the first one by adding a variability metric obtained also from the past ground measurements. The third model takes as additional input the satellite albedo. A non parametric approach based on the linear quantile regression technique is used to generate the set of quantiles that summarize the predictive distributions of the global solar irradiance at a horizontal plane (GHI). The probabilistic models are evaluated on several sites that experience very different climatic conditions. It is shown that incorporating variability significantly reduces the width of interval predictions. The addition of satellite information further improves the quality of the probabilistic forecasts. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.relation | Renewable energy;Vol.158, Oct. 2020, pp. 554-573. | |
dc.rights | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | |
dc.subject | GHI | |
dc.subject | Probabilistic forecast | |
dc.subject | Probaground measurement | |
dc.subject | Solar variability | |
dc.subject | satellite images | |
dc.title | Intra-day solar probabilistic forecasts including local short-term variability and satellite information | |
dc.type | Preprint | |