dc.contributorMassaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorDi Martino Matías, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorFernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creatorMassaferro Saquieres, Pablo
dc.creatorDi Martino, Matías
dc.creatorFernández, Alicia
dc.date.accessioned2020-05-25T17:00:06Z
dc.date.accessioned2022-10-28T20:00:44Z
dc.date.available2020-05-25T17:00:06Z
dc.date.available2022-10-28T20:00:44Z
dc.date.created2020-05-25T17:00:06Z
dc.date.issued2020
dc.identifierMassaferro Saquieres, P., Di Martino, M. y Fernández, A. Fraud detection in electric power distribution : an approach that maximizes the economic return [Preprint]. Publicado en : IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 703-710, Jan. 2020. DOI: 10.1109/TPWRS.2019.2928276
dc.identifierhttps://hdl.handle.net/20.500.12008/24057
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4978137
dc.description.abstractThe detection of non-technical losses (NTL) is a very important economic issue for power utilities. Diverse machine learning strategies have been proposed to support electric power companies tackling this problem. Methods performance is often measured using standard cost-insensitive metrics, such as the accuracy, true positive ratio, AUC, or F1. In contrast, we propose to design a NTL detection solution that maximizes the effective economic return. To that end, both the income recovered and the inspection cost are considered. Furthermore, the proposed framework can be used to design the infrastructure of the division in charge of performing customers inspections. Then, assisting not only short term decisions, e.g., which customer should be inspected first, but also the elaboration of long term strategies, e.g., planning of NTL company budget. The problem is formulated in a Bayesian risk framework. Experimental validation is presented using a large dataset of real users from the Uruguayan utility. The results obtained show that the proposed method can boost companies profit and provide a highly efficient and realistic countermeasure to NTL. Moreover, the proposed pipeline is general and can be easily adapted to other practical problems.
dc.languageen
dc.publisherIEEE
dc.relationIEEE Transactions on Power Systems, vol. 35, no. 1, pp. 703-710, Jan. 2020.
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectEconomic return
dc.subjectNon-technical losses
dc.subjectElectricity theft
dc.subjectAutomatic fraud detection
dc.subjectExample-cost-sensitiv
dc.subjectEconomics
dc.subjectCompanies
dc.subjectInspection
dc.subjectMeters
dc.subjectHistory
dc.subjectMachine learning
dc.subjectSupport vector machines
dc.titleFraud detection in electric power distribution : an approach that maximizes the economic return.
dc.typePreprint


Este ítem pertenece a la siguiente institución