dc.contributorFuentes Magdalena, L2S, CNRS–Université Paris-Sud–CentraleSupélec (France)
dc.contributorMaia Lucas S., Universidade Federal do Rio de Janeiro (Brasil)
dc.contributorRocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.contributorBiscainho Luiz W. P., Universidade Federal do Rio de Janeiro (Brasil)
dc.contributorCrayencour Hélène C., L2S, CNRS–Université Paris-Sud–CentraleSupélec (France)
dc.contributorEssid Slim, LTCI, Télécom Paris, Institut Polytechnique de Paris (France)
dc.contributorBello Juan P., New York University (USA). Music and Audio Research Laboratory
dc.creatorFuentes, Magdalena
dc.creatorMaia, Lucas S.
dc.creatorRocamora, Martín
dc.creatorBiscainho, Luiz W. P.
dc.creatorCrayencour, Hélène C.
dc.creatorEssid, Slim
dc.creatorBello, Juan P.
dc.date.accessioned2019-09-06T21:40:43Z
dc.date.accessioned2022-10-28T19:54:54Z
dc.date.available2019-09-06T21:40:43Z
dc.date.available2022-10-28T19:54:54Z
dc.date.created2019-09-06T21:40:43Z
dc.date.issued2019
dc.identifierFuentes, M, Maia, L, Rocamora, M, Biscainho, L, Crayencour, H, Essid, S y Bello, J. "Tracking beats and microtiming in Afro-Latin American music using conditional random fields and deep learning" . Proceedings of the 20th Conference of the International Society for Music Information Retrieval, Delft, Netherlands, 2019.
dc.identifierhttps://hdl.handle.net/20.500.12008/21752
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4975933
dc.description.abstractEvents in music frequently exhibit small-scale temporal deviations (microtiming), with respect to the underlying regular metrical grid. In some cases, as in music from the Afro-Latin American tradition, such deviations appear systematically, disclosing their structural importance in rhythmic and stylistic configuration. In this work we explore the idea of automatically and jointly tracking beats and microtiming in timekeeper instruments of Afro-Latin American music, in particular Brazilian samba and Uruguayan candombe. To that end, we propose a language model based on conditional random fields that integrates beat and onset likelihoods as observations. We derive those activations using deep neural networks and evaluate its performance on manually annotated data using a scheme adapted to this task. We assess our approach in controlled conditions suitable for these timekeeper instruments, and study the microtiming profiles’ dependency on genre and performer, illustrating promising aspects of this technique towards a more comprehensive understanding of these music traditions.
dc.languageen
dc.rightsLicencia Creative Common Atribución (CC-BY)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.titleTracking beats and microtiming in Afro-Latin American music using conditional random fields and deep learning
dc.typeArtículo


Este ítem pertenece a la siguiente institución