dc.creatorBecerra Angarita, Oscar F. Becerra Angarita
dc.creatorÁlvarez Pizarro, Yuli A.
dc.date2022-08-16
dc.date.accessioned2022-10-28T12:08:32Z
dc.date.available2022-10-28T12:08:32Z
dc.identifierhttp://saber.ucv.ve/ojs/index.php/rev_esp/article/view/24260
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4956159
dc.descriptionIndustrial process supervision is an important subject nowdays due to the increased requirement for safer processes for operators and effective for companies. Control loops affected by disturbs, are grouped with PCA, based on their increased variability and the causal relationships between them are detected via Granger causality. A graph drawing algorithm allows indicating the source of the disturbance. The procedure is applied to data from a simulated chemical process CSTR. The proposed procedeture correctly indicated the sources of disturbances.es-ES
dc.languagespa
dc.publisherEditorial Espacioses-ES
dc.relationhttp://saber.ucv.ve/ojs/index.php/rev_esp/article/view/24260/144814490570
dc.sourceRevista Espacios; Vol. 43 Núm. 7 (2022); 30-48es-ES
dc.source2739-0071
dc.source0798-1015
dc.titleGranger causality procedeture to diagnosis and failture in industrial systems: Procedimiento de causalidad de Granger para diagnóstico y localización de fallas en sistemas industrialeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículos revisado por pareses-ES


Este ítem pertenece a la siguiente institución