dc.creatorDuarte, Vannessa
dc.creatorGonzález, Yomar
dc.creatorCerrolaza, Miguel
dc.date2017-01-17T19:13:22Z
dc.date2017-01-17T19:13:22Z
dc.date2011
dc.date.accessioned2022-10-28T01:20:05Z
dc.date.available2022-10-28T01:20:05Z
dc.identifierhttp://hdl.handle.net/10872/14039
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4947679
dc.descriptionUsually the mechanical condition and the induced electric signal are devoted to be part of the stimuli controlling the biophysical activity associate with healing and remodelling phenomena. The tissue differentiation theory proposed by Claes and Heigele (1999) has been numerically implemented using an poroelastic boundary element framework to characterises fracture healing, leading to a new poroelastic correlation between mechanical conditions and local tissue formation. This paper also presents the implementation of the piezoelectric boundary integral equation to further study the bone tissue behaviour. The results were in good agreement with those reported in previous works.
dc.descriptionSupport by Académia de Ciencias Físicas, Matématicas y Naturales de Venezuela, Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) and Consejo de Desarrollo Cientifíco y Humanistico (CDCH), UCV, is gratefully acknowledged.
dc.languageen
dc.publisherInternational Journal of Biomedical Engineering and Technology
dc.subjectboundary element method
dc.subjectaxisymmetry
dc.subjectbone healing
dc.subjectradon transform
dc.subjecttissue differentiation
dc.subjectpiezoelectricity
dc.subjectanisotropy
dc.titleBoundary element simulation of bone tissue
dc.typeArticle


Este ítem pertenece a la siguiente institución