dc.creatorGuevara-Jordan, J. M.
dc.creatorDa Silva-Rodrígues, C.
dc.creatorQuintero-Pérez, L.
dc.date2013-04-10T04:43:39Z
dc.date2013-04-10T04:43:39Z
dc.date2013-04-10
dc.date.accessioned2022-10-28T00:52:46Z
dc.date.available2022-10-28T00:52:46Z
dc.identifier978-958-695-451-8
dc.identifierhttp://hdl.handle.net/10872/3120
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4937545
dc.descriptionThe fundamental solution method is a meshless approach for the numerical solution of partial differential equations. Its implementation combines free Green functions, a generalization of image’s method, the singular value decomposition, and a boundary collocations method to produce a very simple algorithm for the simulation of some problems in science and engineering. A review of its adaptation to the solution of three classical problems for fluid flow in porous media is presented. These problems are: the tracer flow in a reservoir, the transient pressure distribution in an aquifer, and the computation of pressure and streamlines in a reservoir with thin geological barriers. The analysis of the results shows that the fundamental solution method is a new numerical alternative for the simulation of simple reservoirs or groundwater flow problems.
dc.languageen_US
dc.relationProceeding VII Colombian Congress in Numerical Modelling 2009;
dc.subjectfundamental solutions, singular value descomposition, imaginary wells, tracer, pressure,streamline, geological barriers.
dc.titleSome Applications of the Fundamental Solution Method for Modelling Fluif Flow in Porous Media
dc.typeArticle


Este ítem pertenece a la siguiente institución