dc.contributorOlivares Poggi, Cesar Augusto
dc.creatorHuiza Pereyra, Eric Raphael
dc.date2020-09-01T00:12:05Z
dc.date2020-09-01T00:12:05Z
dc.date2020
dc.date2020-08-31
dc.identifierhttp://hdl.handle.net/20.500.12404/16906
dc.descriptionPeople with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.
dc.descriptionTrabajo de investigación
dc.formatapplication/pdf
dc.languageeng
dc.publisherPontificia Universidad Católica del Perú
dc.publisherPE
dc.rightsAtribución 2.5 Perú
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by/2.5/pe/
dc.subjectRedes neuronales (Computación)
dc.subjectAlgoritmos computacionales
dc.subjectReconocimiento óptico de patrones
dc.subjecthttps://purl.org/pe-repo/ocde/ford#1.02.00
dc.titleTalking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución