dc.creatorZarate, E. J.
dc.creatorPalumbo, M.
dc.creatorMotta, A. L. T.
dc.creatorGrados, J. H.
dc.date.accessioned2021-06-08T02:28:12Z
dc.date.accessioned2022-10-24T16:33:55Z
dc.date.available2021-06-08T02:28:12Z
dc.date.available2022-10-24T16:33:55Z
dc.date.created2021-06-08T02:28:12Z
dc.date.issued2020-09-17
dc.identifierZarate, E. ...[et al]. (2020). Forecasting photovoltaic power using bagging feed-forward neural network. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 12479–12488. http://www.tjprc.org/publishpapers/2-67-1599902532-1188.IJMPERDJUN20201188.pdf
dc.identifier2249–6890
dc.identifierhttps://hdl.handle.net/11537/26746
dc.identifierInternational Journal of Mechanical and Production Engineering Research and Development
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4731718
dc.description.abstractABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox transformation, seasonal and trend decomposition using Loess, and a moving block bootstrap (MBB) technique. An analysis is conducted using the data provided by the active power of the PV power generation system; the data are collected every 30 min for 12 months. The FNN method combined with MBB techniques consistently outperformed the original FNN in terms of forecasting accuracy based on the root mean squared error, on the forecast from one day of anticipation. The results are statistically significant as demonstrated through the Ljung–Box test, which verifies that the forecast errors are not correlated, thereby validating the proposed model.
dc.languageeng
dc.publisherTransstellar Journal Publications and Research Consultancy Private Limited
dc.publisherIN
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.sourceUniversidad Privada del Norte
dc.sourceRepositorio Institucional - UPN
dc.subjectElectricidad
dc.subjectEnergía solar
dc.subjectRecursos energéticos renovables
dc.subjectConsumo de energía
dc.titleForecasting photovoltaic power using bagging feed-forward neural network
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución