dc.creatorPapa Quiroz, Erik
dc.creatorCruzado Acuña, Segundo
dc.date.accessioned2022-04-07T23:00:01Z
dc.date.accessioned2022-10-24T16:24:40Z
dc.date.available2022-04-07T23:00:01Z
dc.date.available2022-10-24T16:24:40Z
dc.date.created2022-04-07T23:00:01Z
dc.date.issued2022-02-01
dc.identifierPapa, E., Cruzado, S. (2022). Linear and superlinear convergence of an inexact algorithm with proximal distances for variational inequality problems. Fixed Point Theory, 23(1). http://dx.doi.org/10.24193/fpt-ro.2022.1.20
dc.identifierhttps://hdl.handle.net/11537/29887
dc.identifierFixed Point Theory
dc.identifierhttp://dx.doi.org/10.24193/fpt-ro.2022.1.20
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4728847
dc.description.abstractThis paper introduces an inexact proximal point algorithm using proximal distances with linear and superlinear rate of convergence for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. This algorithm is new even for the monotone case and from the theoretical point of view the error criteria used improves recent works in the literature.
dc.languageeng
dc.publisherDepartment of Mathematics Babeş-Bolyai University Cluj-Napoca
dc.publisherRO
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.sourceUniversidad Privada del Norte
dc.sourceRepositorio Institucional - UPN
dc.subjectAlgoritmos
dc.subjectAnálisis numérico
dc.subjectMatemáticas
dc.titleLinear and superlinear convergence of an inexact algorithm with proximal distances for variational inequality problems
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución