dc.creatorSanz, Victoria María
dc.date2016-04
dc.date2016-04-21T14:28:05Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/52388
dc.identifierhttp://journal.info.unlp.edu.ar/wp-content/uploads/2015/10/JCST-42-Thesis-Overview-2.pdf
dc.identifierissn:1666-6038
dc.descriptionThe contribution of the thesis is the development of two parallel Best-First Search algorithms, one that is suitable for execution on shared-memory machines (multicore), and another one that is suitable for execution on distributed memory machines (cluster). The former is based on the adaptation of the HDA* (Hash Distributed A*) algorithm for multicore machines proposed by (Burns et al., 2010), while the latter is based on the HDA* (Hash Distributed A*) algorithm proposed by (Kishimoto, et al., 2013). The implemented algorithms incorporate parameters and/or techniques that improve their performance, with respect to the original algorithms proposed by the authors mentioned above.
dc.descriptionEs revisión de: http://sedici.unlp.edu.ar/handle/10915/44478
dc.descriptionResumen de la tesis presentada por la autora para obtener el título de Doctor en Ciencias Informáticas (UNLP, 2015).
dc.descriptionFacultad de Informática
dc.formatapplication/pdf
dc.format61-62
dc.languageen
dc.relationJournal of Computer Science & Technology
dc.relationvol. 16, no. 1
dc.rightshttp://creativecommons.org/licenses/by/3.0/
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.subjectCiencias Informáticas
dc.titlePerformance analysis and optimization of parallel Best-First Search algorithms on multicore and cluster of multicore
dc.typeArticulo
dc.typeRevision


Este ítem pertenece a la siguiente institución