dc.creatorRangel, José Carlos
dc.creatorCazorla, Miguel
dc.creatorGarcía Varea, Ismael
dc.creatorRomero González, Cristina
dc.creatorMartínez Gómez, Jesus
dc.date.accessioned2020-01-02T19:16:46Z
dc.date.accessioned2020-01-02T19:16:46Z
dc.date.accessioned2022-10-24T12:18:15Z
dc.date.available2020-01-02T19:16:46Z
dc.date.available2020-01-02T19:16:46Z
dc.date.available2022-10-24T12:18:15Z
dc.date.created2020-01-02T19:16:46Z
dc.date.created2020-01-02T19:16:46Z
dc.date.issued03/15/2018
dc.date.issued03/15/2018
dc.identifierhttps://ridda2.utp.ac.pa/handle/123456789/9442
dc.identifierhttps://ridda2.utp.ac.pa/handle/123456789/9442
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4705864
dc.description.abstractThe generation of semantic environment representations is still an open problem in robotics. Most of the current proposals are based on metric representations, and incorporate semantic information in a supervised fashion. The purpose of the robot is key in the generation of these representations, which has traditionally reduced the inter-usability of the maps created for different applications. We propose the use of information provided by lexical annotations to generate general-purpose semantic maps from RGB-D images. We exploit the availability of deep learning models suitable for describing any input image by means of lexical labels. Lexical annotations are more appropriate for computing the semantic similarity between images than the state-of-the-art visual descriptors. From these annotations, we perform a bottom-up clustering approach that associates each image with a different category. The use of RGB-D images allows the robot pose associated with each acquisition to be obtained, thus complementing the semantic with the metric information.
dc.languageeng
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectSemantic map
dc.subjectLexical annotations
dc.subject3D registration
dc.subjectRGB-D data
dc.subjectDeep learning
dc.subjectSemantic map
dc.subjectLexical annotations
dc.subject3D registration
dc.subjectRGB-D data
dc.subjectDeep learning
dc.titleAutomatic semantic maps generation from lexical annotations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución