dc.contributorGranda Juca, Maria Fernanda
dc.creatorGranda Juca, Maria Fernanda
dc.date.accessioned2018-01-11T21:21:55Z
dc.date.accessioned2022-10-20T23:47:51Z
dc.date.available2018-01-11T21:21:55Z
dc.date.available2022-10-20T23:47:51Z
dc.date.created2018-01-11T21:21:55Z
dc.date.issued2014
dc.identifier978-1-4799-6337-9
dc.identifier0000-0000
dc.identifierhttps://ieeexplore.ieee.org/document/6890115
dc.identifier10.1109/EmpiRE.2014.6890115
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4619795
dc.description.abstractCurrently, in a Model-Driven Engineering environment, it is a difficult and challenging task to fully automate model-driven testing because this demands complete and unambiguous models as input. Although some approaches have been developed to generate test cases from models, they require rigorous assessment of the completeness of the derivation rules. This paper proposes the plan and design of a controlled experiment that analyses a test case generation strategy for the purpose of evaluating its completeness from the viewpoint of those testers who will use a Communication Analysis-based requirements model. We will compare the abstract test cases obtained by applying (i) manual derivation without derivation rules with (ii) manual derivation with transformation rules; and both these strategies against a case of automated generation using transformation rules.
dc.languagees_ES
dc.publisherIEEE
dc.sourceConference Proceedings
dc.subjectExperimental Design
dc.subjectTest Case Validation
dc.subjectModel-driven testing
dc.subjectConceptual Schema Testing
dc.subjectTest Model Generation
dc.subjectTest Cases Generation
dc.titleAn experiment design for validating a test case generation strategy from requirements models
dc.typeARTÍCULO DE CONFERENCIA


Este ítem pertenece a la siguiente institución