dc.creatorSucozhañay Calle, Adrian Esteban
dc.creatorCelleri Alvear, Rolando Enrique
dc.date.accessioned2019-07-29T21:51:27Z
dc.date.accessioned2022-10-20T23:18:50Z
dc.date.available2019-07-29T21:51:27Z
dc.date.available2022-10-20T23:18:50Z
dc.date.created2019-07-29T21:51:27Z
dc.date.issued2018
dc.identifier2073-4441
dc.identifierhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052783498&origin=inward
dc.identifier10.3390/w10091169
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4616424
dc.description.abstractIn places with high spatiotemporal rainfall variability, such as mountain regions, input data could be a large source of uncertainty in hydrological modeling. Here we evaluate the impact of rainfall estimation on runoff modeling in a small páramo catchment located in the Zhurucay Ecohydrological Observatory (7.53 km 2) in the Ecuadorian Andes, using a network of 12 rain gauges. First, the HBV-light semidistributed model was analyzed in order to select the best model structure to represent the observed runoff and its subflow components. Then, we developed six rainfall monitoring scenarios to evaluate the impact of spatial rainfall estimation in model performance and parameters. Finally, we explored how a model calibrated with far-from-perfect rainfall estimation would perform using new improved rainfall data. Results show that while all model structures were able to represent the overall runoff, the standard model structure outperformed the others for simulating subflow components. Model performance (NSeff) was improved by increasing the quality of spatial rainfall estimation from 0.31 to 0.80 and from 0.14 to 0.73 for calibration and validation period, respectively. Finally, improved rainfall data enhanced the runoff simulation from a model calibrated with scarce rainfall data (NSeff 0.14) from 0.49 to 0.60. These results confirm that in mountain regions model uncertainty is highly related to spatial rainfall and, therefore, to the number and location of rain gauges. View Full-Text
dc.languagees_ES
dc.sourceWater (Switzerland)
dc.subjectModeling uncertainty
dc.subjectPáramo ecosystem
dc.subjectPrecipitation estimation
dc.subjectRainfall monitoring
dc.subjectRainfall-runoff modeling
dc.titleImpact of rain gauges distribution on the runoff simulation of a small mountain catchment in southern Ecuador
dc.typeARTÍCULO


Este ítem pertenece a la siguiente institución