dc.creatorPeña Ortega, Mario Patricio
dc.creatorCerrada, Mariela
dc.creatorAlvarez Palomeque, Lourdes Ximena
dc.creatorJadan Aviles, Diana Carolina
dc.creatorLucero, Pablo M
dc.creatorBarragan Landy, Milton Francisco
dc.creatorGuaman Guachichullca, Noe Rodrigo
dc.creatorSánchez, René Vinicio
dc.date.accessioned2019-08-27T13:59:30Z
dc.date.accessioned2022-10-20T22:59:35Z
dc.date.available2019-08-27T13:59:30Z
dc.date.available2022-10-20T22:59:35Z
dc.date.created2019-08-27T13:59:30Z
dc.date.issued2018
dc.identifier1064-1246, 1875-8967 (online)
dc.identifierhttp://dspace.ucuenca.edu.ec/handle/123456789/33331
dc.identifierhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85049382824&doi=10.3233%2fJIFS-169525&origin=inward&txGid=ad5f3dd705af4eb8a7e0f4ae3849b487#corrAuthorFooter
dc.identifier10.3233 / JIFS-169525
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4614227
dc.description.abstractThe number of features for fault diagnosis in rotating machinery can be large due to the different available signals containing useful information. From an extensive set of available features, some of them are more adequate than other ones, to classify properly certain fault modes. The classic approach for feature selection aims at ranking the set of original features; nevertheless, in feature selection, it has been recognized that a set of best individually features does not necessarily lead to good classification. This paper proposes a framework for feature engineering to identify the set of features which can yield proper clusters of data. First, the framework uses ANOVA combined with Tukey's test for ranking the significant features individually; next, a further analysis based on inter-cluster and intra-cluster distances is accomplished to rank subsets of significant features previously identified. Our contribution aims at discovering the subset of features that discriminates better the clusters of data associated to several faulty conditions of the mechanical devices, to build more robust multi-fault classifiers. Fault severity classification in rolling bearings is studied to verify the proposed framework, with data collected from a test bed under real conditions of speed and load on the rotating device. © 2018 - IOS Press and the authors. All rights reserved.
dc.languagees_ES
dc.sourceJournal of Intelligent and Fuzzy Systems
dc.subjectAnova
dc.subjectBearings
dc.subjectCluster Validity Assessment
dc.subjectFault Diagnosis
dc.subjectFeature Engineering
dc.subjectKnn
dc.titleFeature engineering based on ANOVA, cluster validity assessment and KNN for fault diagnosis in bearings
dc.typeARTÍCULO


Este ítem pertenece a la siguiente institución