dc.creatorRobles Granda, Pablo Dario
dc.creatorTello Guerrero, Marco Andres
dc.creatorSolano Quinde, Lizandro Damian
dc.creatorZuñiga Prieto, Miguel Angel
dc.date.accessioned2020-05-07T17:43:13Z
dc.date.accessioned2022-10-20T22:51:07Z
dc.date.available2020-05-07T17:43:13Z
dc.date.available2022-10-20T22:51:07Z
dc.date.created2020-05-07T17:43:13Z
dc.date.issued2020
dc.identifier978-303032021-8
dc.identifier2194-5357
dc.identifierhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075643669&origin=inward
dc.identifier10.1007/978-3-030-32022-5_13
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4613255
dc.description.abstractWe present two techniques for modeling time series of emergency events using data from 911 emergency calls in the city of Cuenca-Ecuador. We study state-of-the-art methods for time series analysis and assess the benefits and drawbacks of each one of them. In this paper, we develop an emergency model using a large dataset corresponding to the period January 1st 2015 through December 31st 2016 and test a Gaussian Process and an ARIMA model for temporal prediction purposes. We assess the performance of our approaches experimentally, comparing the standard residual error (SRE) and the execution time of both models. In addition, we include climate and holidays data as explanatory variables of the regressions aiming to improve the prediction. The results show that ARIMA model is the most suitable one for forecasting emergency events even without the support of additional variables.
dc.languagees_ES
dc.publisherSpringer
dc.sourceAdvances in Intelligent Systems and Computing
dc.subject911 calls
dc.subjectARIMA
dc.subjectEmergency calls
dc.subjectGP
dc.subjectTemporal models
dc.subject911 calls
dc.subjectARIMA
dc.subjectEmergency calls
dc.subjectGP
dc.subjectTemporal models
dc.titleTemporal analysis of 911 emergency calls through time series modeling
dc.typeARTÍCULO DE CONFERENCIA


Este ítem pertenece a la siguiente institución