dc.creatorPinos Velez, Veronica Patricia
dc.creatorCisneros Ramos, Juan Fernando
dc.creatorPelaez Samaniego, Manuel Raul
dc.creatorAlvarado Martinez, Andres Omar
dc.creatorNopens, Ingmar
dc.date.accessioned2021-10-19T17:56:05Z
dc.date.accessioned2022-10-20T22:09:04Z
dc.date.available2021-10-19T17:56:05Z
dc.date.available2022-10-20T22:09:04Z
dc.date.created2021-10-19T17:56:05Z
dc.date.issued2021
dc.identifier2073-4441
dc.identifierhttp://dspace.ucuenca.edu.ec/handle/123456789/37052
dc.identifierhttps://www.mdpi.com/2073-4441/13/13/1821
dc.identifier10.3390/w13131821
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4608350
dc.description.abstractResidence time distribution (RTD) curves play an essential role in the hydraulic characterization of reactors. Current approaches for obtaining RTD curves in laboratory-scale reactors are time-consuming and subject to large errors. Thus, automated systems to obtain RTD curves in laboratory-scale reactors are of great interest for reducing experimental errors due to human interaction, minimizing experimentation costs, and continuously obtaining experimental data. An automated system for obtaining RTD curves in laboratory-scale reactors was designed, built, and tested in this work. During the tests conducted in a cylindrical upflow anaerobic sludge blanket (UASB) reactor, the system worked properly using the stimulus–response pulse technique with sodium chloride as a tracer. Four main factors were found to affect the representativeness of the RTD curves: flow stabilization time, test water conductivity, temperature, and surface tension. A discussion on these factors and the corresponding solutions is presented. The RTD curves of the UASB reactor are left-skewed with a typical tank reactor’s flow shape with channeling and dead zones. A transitory flow behavior was evidenced in the reactor, which indicates the influence of internal turbulent flow structures. The system proposed herein is expected to help study the hydraulics of reactors using laboratory-scale models more efficiently
dc.languagees_ES
dc.sourceWater
dc.subjectResidence time distribution curve
dc.subjectLaboratory-scale model reactor
dc.subjectUASB reactor
dc.subjectAutomated system
dc.titleDevelopment of an automated tracer testing system for UASB laboratory-scale reactors
dc.typeARTÍCULO


Este ítem pertenece a la siguiente institución