dc.contributorSaquicela Galarza, Victor Hugo
dc.creatorSaquicela Galarza, Victor Hugo
dc.creatorSegarra Flores, José Luis
dc.creatorTello Guerrero, Marco Andres
dc.creatorEspinoza Mejia, Jorge Mauricio
dc.creatorLupercio Novillo, Rosa Lucia
dc.creatorVillazón Terrazas, Boris Marcelo
dc.date.accessioned2019-07-30T16:03:05Z
dc.date.accessioned2022-10-20T20:47:47Z
dc.date.available2019-07-30T16:03:05Z
dc.date.available2022-10-20T20:47:47Z
dc.date.created2019-07-30T16:03:05Z
dc.date.issued2019
dc.identifier000-00-000
dc.identifier2194-5357
dc.identifierhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055662712&origin=inward
dc.identifier10.1007/978-3-030-02828-2_21
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4598932
dc.description.abstractLinked Open Data (LOD) generation is a common activity within organizations due to its advantages for sharing and reusing information. Since these technologies require specialized knowledge, the development of technological and methodological tools that allows its implementation is limited. Most of the current solutions are built on top of specific tools which require considerable effort to consolidate into an integral solution. Moreover, those tools work on specific domains, or they do not support some of the phases required for LOD life cycle (e.g., data cleaning, data exploitation). In this paper, we present a framework for LOD management which follows methodological principles presented in the state of the art in scientific literature and provides an unified software tool for publishing LOD for multiple domains and technologies. Our platform leverages a modular ETL processor, allowing a transparent and flexible integration, providing an integral environment for LOD. This framework was tested, successfully, using data sources from different domains, e.g., digital repositories, libraries.
dc.languagees_ES
dc.publisherSpringer Nature
dc.sourceAdvances in Intelligent Systems and Computing
dc.subjectData integration
dc.subjectFramework
dc.subjectLinked data
dc.subjectLOD life cycle
dc.subjectMethodological guidelines
dc.titleLOD-GF: an integral linked open data generation framework
dc.typeARTÍCULO DE CONFERENCIA


Este ítem pertenece a la siguiente institución