dc.creatorAguilar Feijo, Victor Gerardo
dc.creatorVillavicencio Quinde, Manuel Gonzalo
dc.creatorRoldan Monsalve, Diego Fernando
dc.creatorRoldan Arauz, Diego Francisco
dc.date.accessioned2021-01-20T03:36:02Z
dc.date.accessioned2022-10-20T20:22:07Z
dc.date.available2021-01-20T03:36:02Z
dc.date.available2022-10-20T20:22:07Z
dc.date.created2021-01-20T03:36:02Z
dc.date.issued2019
dc.identifier1392-0340
dc.identifierhttp://dspace.ucuenca.edu.ec/handle/123456789/35452
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078438332&doi=10.15823%2fp.2019.135.1&partnerID=40&md5=0bd0b3ab976fde43f6fd113302a10a2b
dc.identifier10.15823/p.2019.135.1
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4596032
dc.description.abstractWe propose a new metaheuristic algorithm to find “good” solutions for the assignment of small treatment-control groups, minimising the random resource. Using simulated cases, we achieved 100% groups with equivalence levels equal to or higher than those generated with the simple random assignment, complete random assignment and block random assignment designs. In addition, as a secondary objective to test the new algorithm, we found that short out-of-class essays implied that treatment group marks were 14% higher than in the control group. © 2019, Vilnius Pedagogical University.
dc.languagees_ES
dc.sourcePedagogika
dc.subjectLearning measurement
dc.subjectGroup equivalence
dc.subjectEffective Meta-Heuristic Assignment
dc.subjectSmall treatment and control groups
dc.titleEffective metaheuristic assignment to improve equivalence in small experimental pedagogical groups
dc.typeARTÍCULO


Este ítem pertenece a la siguiente institución